scholarly journals Dynamics of the rumor-spreading model with hesitation mechanism in heterogenous networks and bilingual environment

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shuai Yang ◽  
Haijun Jiang ◽  
Cheng Hu ◽  
Juan Yu ◽  
Jiarong Li

Abstract In this paper, a novel rumor-spreading model is proposed under bilingual environment and heterogenous networks, which considers that exposures may be converted to spreaders or stiflers at a set rate. Firstly, the nonnegativity and boundedness of the solution for rumor-spreading model are proved by reductio ad absurdum. Secondly, both the basic reproduction number and the stability of the rumor-free equilibrium are systematically discussed. Whereafter, the global stability of rumor-prevailing equilibrium is explored by utilizing Lyapunov method and LaSalle’s invariance principle. Finally, the sensitivity analysis and the numerical simulation are respectively presented to analyze the impact of model parameters and illustrate the validity of theoretical results.

Author(s):  
Bedreddine AINSEBA ◽  
Tarik Touaoula ◽  
Zakia Sari

In this paper, an age structured epidemic Susceptible-Infected-Quarantined-Recovered-Infected (SIQRI) model is proposed, where we will focus on the role of individuals that leave their class of quarantine before being completely recovered and thus will participate again to the transmission of the disease. We investigate the asymptotic behavior of solutions by studying the stability of both trivial and positive equilibria. In order to see the impact of the different model parameters like the relapse rate on the qualitative behavior of our system, we firstly, give the explicit expression of the epidemic reproduction number $R_{0}.$ This number is a combination of the classical epidemic reproduction number for the SIQR model and a new epidemic reproduction number corresponding to the individuals infected by a relapsed person from the R-class. It is shown that, if $R_{0}\leq 1$, the disease free equilibrium is globally asymptotically stable and becomes unstable for $R_{0}>1$. Secondly, while $R_{0}>1$, a suitable Lyapunov functional is constructed to prove that the unique endemic equilibrium is globally asymptotically stable on some subset $\Omega_{0}.$


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zijun Wang ◽  
An Chen

At present, the feasibility of using self-purification mechanism to inhibit rumor spreading has been confirmed by studies from different perspectives. This paper improves the classical rumor spreading models with self-purification mechanism, analyzes the correlation between spreading threshold in the model and its self-purification level theoretically, and conducts numerical simulations to study the impact of the changes of model parameters on key indicators in the process of rumor spreading. The simulation results show that changes of model parameters, including self-purification level and forgetting rate, exert significant influences on rumor spreading exactly.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Longxing Qi ◽  
Jing-an Cui ◽  
Tingting Huang ◽  
Fengli Ye ◽  
Longzhi Jiang

Based on the real observation data in Tongcheng city, this paper established a mathematical model of schistosomiasis transmission under flood in Anhui province. The delay of schistosomiasis outbreak under flood was considered. Analysis of this model shows that the disease free equilibrium is locally asymptotically stable if the basic reproduction number is less than one. The stability of the unique endemic equilibrium may be changed under some conditions even if the basic reproduction number is larger than one. The impact of flood on the stability of the endemic equilibrium is studied and the results imply that flood can destabilize the system and periodic solutions can arise by Hopf bifurcation. Finally, numerical simulations are performed to support these mathematical results and the results are in accord with the observation data from Tongcheng Schistosomiasis Control Station.


2014 ◽  
Vol 25 (05) ◽  
pp. 1440010 ◽  
Author(s):  
Mei Sun ◽  
Dandan Li ◽  
Dun Han ◽  
Changsheng Jia

The impact of anti-virus software on the spreading of computer virus is investigated via developing a mathematical model in this paper. Considering the anti-virus software may not be effective, as it may be an outdated version, and then the computers may be infected with a reduced incidence rate. According to the method of next generation matrix, the basic reproduction number is derived. By introducing appropriate Lyapunov function and the Routh stability criterion, acquiring the stability conditions of the virus-free equilibrium and virus equilibrium. The effect of anti-virus software and disconnecting rate on the spreading of virus are also analyzed. When combined with the numerical results, a set of suggestions are put forward for eradicating virus effectively.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Wei Zhang ◽  
Hongyong Deng ◽  
Xingmei Li ◽  
Huan Liu

The spread of rumors has a great impact on social order, people’s psychology, and life. In recent years, the application of rumor-spreading models in complex networks has received extensive attention. Taking the management and control of rumors by relevant departments in real life into account, the SIDRQ rumor-spreading model that combines forgetting mechanism, immune mechanism, and suspicion mechanism and guides on a uniform network is established in this paper. Then, the basic reproductive number of the system and the unique existence of the solution are discussed, and the stability of the system is analyzed using the basic reproductive number, Lyapunov function, and Lienard and Chipart theorem; furthermore, the basic reproductive number may not be able to deduce the stability of the system and a counterexample is given. Finally, the influence of different parameters on the spread of rumors is studied, and the validity of the theoretical results is verified.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850067 ◽  
Author(s):  
Maoxing Liu ◽  
Yuting Chang ◽  
Haiyan Wang ◽  
Benxing Li

In this paper, a mathematical model to study the impact of Twitter in controlling infectious disease is proposed. The model includes the dynamics of “tweets” which may enhance awareness of the disease and cause behavioral changes among the public, thus reducing the transmission of the disease. Furthermore, the model is improved by introducing a time delay between the outbreak of disease and the release of Twitter messages. The basic reproduction number and the conditions for the stability of the equilibria are derived. It is shown that the system undergoes Hopf bifurcation when time delay is increased. Finally, numerical simulations are given to verify the analytical results.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2195
Author(s):  
Huaixing Li ◽  
Jiaoyan Wang

This paper is concerned with the stability of a SEIR (susceptible-exposed-infectious-recovered) model with the age of infection and vaccination. Firstly, we prove the positivity, boundedness, and asymptotic smoothness of the solutions. Next, the existence and local stability of disease-free and endemic steady states are shown. The basic reproduction number R0 is introduced. Furthermore, the global stability of the disease-free and endemic steady states is derived. Numerical simulations are shown to illustrate our theoretical results.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950060
Author(s):  
A. Oumar Bah ◽  
M. Lam ◽  
A. Bah ◽  
S. Bowong

This paper has been motivated by the following biological question: how influential are desert aerosols in the transmission of meningitidis serogroup A (MenA)? A mathematical model for the dynamical transmission of MenA is considered, with the aim of investigating the impact of desert aerosols. Sensitivity analysis of the model has been performed in order to determine the impact of related parameters on meningitis outbreak. We derive the basic reproduction number [Formula: see text]. We prove that there exists a threshold parameter [Formula: see text] such that when [Formula: see text], the disease-free equilibrium is globally asymptotically stable (GAS). However, when [Formula: see text], the model exhibits the phenomenon of backward bifurcation. At the endemic level, we show that the number of infectious individuals in the presence of desert aerosols is larger than the corresponding number without the presence of desert aerosols. In conjunction with the inequality [Formula: see text] where [Formula: see text] is the basic reproduction number without desert aerosols, we found that the ingestion of aerosols by carriers will increase the endemic level, and the severity of the outbreak. This suggests that the control of MenA passes through a combination of a large coverage vaccination of young susceptible individuals and the production of a vaccine with a high level of efficacy as well as respecting the hygienic rules to avoid the inhalation of desert aerosols. Theoretical results are supported by numerical simulations.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fatima Khadadah ◽  
Abdullah A. Al-Shammari ◽  
Ahmad Alhashemi ◽  
Dari Alhuwail ◽  
Bader Al-Saif ◽  
...  

Abstract Background Aggressive non-pharmaceutical interventions (NPIs) may reduce transmission of SARS-CoV-2. The extent to which these interventions are successful in stopping the spread have not been characterized in countries with distinct socioeconomic groups. We compared the effects of a partial lockdown on disease transmission among Kuwaitis (P1) and non-Kuwaitis (P2) living in Kuwait. Methods We fit a modified metapopulation SEIR transmission model to reported cases stratified by two groups to estimate the impact of a partial lockdown on the effective reproduction number ($$ {\mathcal{R}}_e $$ R e ). We estimated the basic reproduction number ($$ {\mathcal{R}}_0 $$ R 0 ) for the transmission in each group and simulated the potential trajectories of an outbreak from the first recorded case of community transmission until 12 days after the partial lockdown. We estimated $$ {\mathcal{R}}_e $$ R e values of both groups before and after the partial curfew, simulated the effect of these values on the epidemic curves and explored a range of cross-transmission scenarios. Results We estimate $$ {\mathcal{R}}_e $$ R e at 1·08 (95% CI: 1·00–1·26) for P1 and 2·36 (2·03–2·71) for P2. On March 22nd, $$ {\mathcal{R}}_e $$ R e for P1 and P2 are estimated at 1·19 (1·04–1·34) and 1·75 (1·26–2·11) respectively. After the partial curfew had taken effect, $$ {\mathcal{R}}_e $$ R e for P1 dropped modestly to 1·05 (0·82–1·26) but almost doubled for P2 to 2·89 (2·30–3·70). Our simulated epidemic trajectories show that the partial curfew measure greatly reduced and delayed the height of the peak in P1, yet significantly elevated and hastened the peak in P2. Modest cross-transmission between P1 and P2 greatly elevated the height of the peak in P1 and brought it forward in time closer to the peak of P2. Conclusion Our results indicate and quantify how the same lockdown intervention can accentuate disease transmission in some subpopulations while potentially controlling it in others. Any such control may further become compromised in the presence of cross-transmission between subpopulations. Future interventions and policies need to be sensitive to socioeconomic and health disparities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


Sign in / Sign up

Export Citation Format

Share Document