The Capability of Beauveria Bassiana for Cellulase Enzyme Production

Author(s):  
Wanida Petlamul ◽  
Thawatchai Sripornngam ◽  
Narawadee Buakwan ◽  
Sawai Buakaew ◽  
Kuntapon Mahamad
2021 ◽  
Vol 7 (10) ◽  
pp. 868
Author(s):  
Laila Naher ◽  
Siti Noor Fatin ◽  
Md Abdul Halim Sheikh ◽  
Lateef Adebola Azeez ◽  
Shaiquzzaman Siddiquee ◽  
...  

Fungi are a diverse group of microorganisms that play many roles in human livelihoods. However, the isolation of potential fungal species is the key factor to their utilization in different sectors, including the enzyme industry. Hence, in this study, we used two different fungal repositories—soil and weed leaves—to isolate filamentous fungi and evaluate their potential to produce the cellulase enzyme. The fungal strains were isolated using dichloran rose bengal agar (DRBA) and potato dextrose agar (PDA). For cellulase enzyme production, a rice straw submerged fermentation process was used. The enzyme production was carried out at the different incubation times of 3, 5, and 7 days of culture in submerged conditions with rice straw. Fungal identification studies by morphological and molecular methods showed that the soil colonies matched with Trichoderma reesei, and the weed leaf colonies matched with Aspergillus awamori. These species were coded as T. reesei UMK04 and A. awamori UMK02, respectively. This is the first report of A. awamori UMK02 isolation in Malaysian agriculture. The results of cellulase production using the two fungi incorporated with rice straw submerged fermentation showed that T. reesei produced a higher amount of cellulase at Day 5 (27.04 U/mg of dry weight) as compared with A. awamori (15.19 U/mg of dry weight), and the concentration was significantly different (p < 0.05). Our results imply that T. reesei can be utilized for cellulase production using rice straw.


Author(s):  
Francis John V ◽  
Dr. Soloman P A

Fruit wastes were incubated with the mixture of cellulolytic fungi Penicillium citrinum, Aspergillus oryzae, and Trichoderma viride to hydrolyze the cellulosic components and to increase the degree of degradation. . The batch experiments are statistically designed and performed using Box-Benhken method of Response Surface Methodology to investigate the influence of major parameters viz., incubation time, temperature, pH, moisture content and substrate concentration on cellulase enzyme production. Maximum cellulase production of 2.03 Units/ml (U/ml) was detected by the RSM method in a mixed culture containing fungi at a ratio of 1: 1: 1 under optimal conditions at an incubation time of 5.27 days, a temperature of 34.09 °C, pH 4.85, moisture content of 63.83% and a substrate concentration of 5.03%.


2017 ◽  
Vol 2 (2) ◽  
pp. 155 ◽  
Author(s):  
Hassan Sher ◽  
Muhammad Faheem ◽  
Abdul Ghani ◽  
Rashid Mehmood ◽  
Hamza Rehman ◽  
...  

Cellulases are the hydrolytic group of enzymes, responsible for release of sugars in the bioconversion of the cellulosic biomass into a variety of value added industrial products. Fungal isolated cellulases are well studied and playing a significant role in various industrial processes. Enzymatic depolymerisation of cellulosic material has been done by the various fungal isolated enzymes. In the present study, the cultivation conditions for cellulase production from Aspergillus species were optimized. Optimization of scarification conditions such as time course, inoculum size, carbon source and concentration, nitrogen source, various pH levels were performed for the production of extracellular carboxymethyl cellulase and endoglucanase enzyme. The result exhibited, 15 % inoculums size, corncobs 2 % concentration, Urea and medium pH 7 at 30oC supported high yield of carboxymethyl cellulase (38.80 U/ml/min) and exoglucanase enzyme (10.94 U/ml/min) through a submerged fermentation (SmF). In future biotechnological applications in cellulase enzyme production attain a vital role to obtain high degradable yield.


2018 ◽  
Vol 19 (2) ◽  
pp. 159 ◽  
Author(s):  
Arom Septiani ◽  
W Wijanarka ◽  
MG Isworo Rukmi

The waste of cellulose in the agro-industry can be reduced by decomposing the cellulose polymer into glucose. This process was carried out by cellulase enzyme (EC 3.2.1.4) produced by cellulolytic bacteria. Bacteria required food as nutrition to survived their life, can be obtained through growth medium or enzyme production medium. Carbon, nitrogen and calcium belong to the essential nutrients contained in growth medium and enzyme production medium. The purpose of this study is to determine the effect of the addition of carbon, nitrogen and calcium source and the time of incubation on the production of cellulase enzyme from Seratia marcescens KE-B6 bacteria. This research used Completely Randomized Design (RAL) of Factorial Pattern with two factors. The first factor is the type of medium, the first medium is the standard medium (M1) and the second medium is enriched with carbon, nitrogen and calcium sources (M2), the second factor is the incubation time with 5 repetitions. The enzyme production is measured by the reducing sugar method. The data obtained were analyzed using Anova. The results showed that the addition of carbon, nitrogen, and calcium sources and incubation time did not affect the production of cellulase enzyme by Serratia marcescens KE-B6. Keywords: Cellulose, Cellulase enzyme, Serratia marcescens


Sign in / Sign up

Export Citation Format

Share Document