Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1213
Author(s):  
Dairoku Muramatsu ◽  
Ken Sasaki

As society ages, wireless body area networks (WBANs) are expected to increasingly improve the quality of life of the elderly and disabled. One promising WBAN technology is human body communication (HBC), which utilizes part of the human body as a transmission medium. Communication between head-mounted wearable devices, such as hearing aids, is a potential HBC application. To clarify the HBC transmission mechanism between head-mounted wearable devices, this study analyzes the input impedance characteristics of the transceiver electrodes, transmission characteristics, and electric field distributions around and through a detailed head model. The investigation was performed via an electromagnetic field simulation. The signal frequency had less effect on the transmission characteristics and electric field distributions at 10, 20, and 30 MHz. However, the transmission mechanism between the head-mounted wearable devices was influenced by the number of electrodes in the transceiver. Moreover, the transmission characteristics between two-electrode transceivers were improved by impedance matching. Finally, the availability of the proposed system was evaluated from power consumption and human safety perspectives.


2018 ◽  
Vol 8 (9) ◽  
pp. 1539 ◽  
Author(s):  
Kentaro Yamamoto ◽  
Yoshifumi Nishida ◽  
Ken Sasaki ◽  
Dairoku Muramatsu ◽  
Fukuro Koshiji

Human body communication (HBC) is a wireless communication method that uses the human body as part of the transmission medium. Electrodes are used instead of antennas, and the signal is transmitted by the electric current through the human body and by the capacitive coupling outside the human body. In this study, direction of electric field lines and direction of electric current through the human body were analyzed by the finite-difference time-domain method to clarify the signal path, which is not readily apparent from electric field strength distribution. Signal transmission from a transmitter on the subject’s wrist to an off-body receiver touched by the subject was analyzed for two types of transmitter electrode settings. When both the signal and ground electrodes were put in contact with the human body, the major return path consisted of capacitive coupling between the receiver ground and the human body, and the electric current through the human body that flowed back to the ground electrode of the transmitter. When the ground electrode was floating, the only return path was through the capacitive coupling of the floating ground. These results contribute to the better understanding of signal transmission mechanism of HBC and will be useful for developing HBC applications.


Sign in / Sign up

Export Citation Format

Share Document