Network Coding for 5G Network and D2D Communication

Author(s):  
Luiz F.M. Vieira ◽  
Marcos A.M. Vieira
Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2937
Author(s):  
Valmik Tilwari ◽  
MHD Nour Hindia ◽  
Kaharudin Dimyati ◽  
Dushantha Nalin K. Jayakody ◽  
Sourabh Solanki ◽  
...  

With the rapid development of future wireless networks, device-to-device (D2D) technology is widely used as the communication system in the Internet of Things (IoT) fifth generation (5G) network. The IoT 5G network based on D2D communication technology provides pervasive intelligent applications. However, to realize this reliable technology, several issues need to be critically addressed. Firstly, the device’s energy is constrained during its vital operations due to limited battery power; thereby, the connectivity will suffer from link failures when the device’s energy is exhausted. Similarly, the device’s mobility alters the network topology in an arbitrary manner, which affects the stability of established routes. Meanwhile, traffic congestion occurs in the network due to the backlog packet in the queue of devices. This paper presents a Mobility, Battery, and Queue length Multipath-Aware (MBMQA) routing scheme for the IoT 5G network based on D2D communication to cope with these key challenges. The back-pressure algorithm strategy is employed to divert packet flow and illuminate the device selection’s estimated value. Furthermore, a Multiple-Attributes Route Selection (MARS) metric is applied for the optimal route selection with load balancing in the D2D-based IoT 5G network. Overall, the obtained simulation results demonstrate that the proposed MBMQA routing scheme significantly improves the network performance and quality of service (QoS) as compared with the other existing routing schemes.


Author(s):  
Yulei Zhao ◽  
Yong Li ◽  
Zhiguo Ding ◽  
Ning Ge ◽  
H. Vincent Poor

Author(s):  
Lei Wang ◽  
Yu Liu ◽  
Jia Xu ◽  
Jun Yin ◽  
Lijie Xu ◽  
...  

AbstractIt is becoming more and more popular to share videos among multiple users. However, sharing video in traditional cellular networks will incur high expenses. Device-to-device (D2D) communication is one of the crucial technologies in the fifth-generation network, and it enables the devices to transmit data directly without the relay of base stations. This paper proposes a network-coding-based video distribution scheme for the D2D communication environment. The proposed scheme applies the network coding technology in the H.264 video transmission, which can protect crucial information of the video. This scheme enables the receivers to decode the original video with a high probability, especially in the networks with interferences. Both the simulation results and the actual experimental results show that using network coding technology in video transmission can improve the quality of the received video. Compared with the traditional scheme, the successful decoding rate of the proposed scheme is increased by $$46\%$$ 46 % in our experimental settings.


Author(s):  
Hanan H. Hussein ◽  
Hussein A. Elsayed ◽  
Sherine M. Abd El-kader

5G is the next step in the evolution of mobile communication. The evolving 5G cellular wireless networks are envisioned to provide higher data rates, enhanced end-user quality-of-experience (QoE), reduced end-to-end latency, and lower energy consumption. Device to device (D2D) is one of the key technologies provided to enhance 5G performance. Direct communication between two devices without involvement of any central point (i.e., base station) is defined as device to device (D2D) communication. It is a recommended technique to enhance the network performance of 5G in terms of energy efficiency, throughput, latency, and spectrum utilization. In this chapter, the authors provide a detailed survey on the integration of D2D communication into cellular network especially 5G network. The survey highlights the potential advantages; classifications and application for D2D technology have been indicated. Main D2D standards have been presented. Finally, the chapter addresses main topics that could be related to D2D and indicates all major possible challenges that face most researchers.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 25263-25273 ◽  
Author(s):  
Jun Li ◽  
Guanglin Lei ◽  
Gunasekaran Manogaran ◽  
George Mastorakis ◽  
Constandinos X. Mavromoustakis

Sign in / Sign up

Export Citation Format

Share Document