A Hyper-Redundant Robot Development for Tokamak Inspection

Author(s):  
Pramit Dutta ◽  
K. K. Gotewal ◽  
Naveen Rastogi ◽  
Raviranjan Tiwari ◽  
ManoahStephen M
Keyword(s):  
2005 ◽  
Author(s):  
D. Braganza ◽  
M. L. McIntyre ◽  
D. M. Dawson ◽  
I. Walker

Author(s):  
Ching-Chang Wong ◽  
Hsuan Ming Feng ◽  
Yu-Cheng Lai ◽  
Hsiang-Yun Chen

This paper designed a 7-DOF redundant robot manipulator that can flexibly and efficiently pick-up random objects. The developed 7-DOF machine with an additional redundancy achieved great progress in terms of flexibility and efficiency in the operational space. A robot operating system (ROS) was used to configure the manipulator system’s software modules, supporting convenient system interface, appropriate movement control policy, and powerful hardware device management for better regulation of the manipulator’s motions. A 3D type Point Cloud Library (PCL) was utilized to perform a novel point cloud image pre-processing method that did not only reduce the point cloud number but also maintained the original quality. The results of the experiment showed that the estimation speed in object detection and recognition procedure improved significantly. The redundant robot manipulator architecture with the two-stage search algorithm was able to find the optimal null space. Suitable parameters in D-H transformation of forward kinematics were selected to efficiently control and position the manipulator in the right posture. Meanwhile, the reverse kinematics estimated all angles of the joints through the known manipulator position, orientation, and redundancy. Finally, motion panning implementation of manipulator rapidly and successfully reached the random object position and automatically drew it up to approximate the desired target.


2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Midhun S. Menon ◽  
V. C. Ravi ◽  
Ashitava Ghosal

Hyper-redundant snakelike serial robots are of great interest due to their application in search and rescue during disaster relief in highly cluttered environments and recently in the field of medical robotics. A key feature of these robots is the presence of a large number of redundant actuated joints and the associated well-known challenge of motion planning. This problem is even more acute in the presence of obstacles. Obstacle avoidance for point bodies, nonredundant serial robots with a few links and joints, and wheeled mobile robots has been extensively studied, and several mature implementations are available. However, obstacle avoidance for hyper-redundant snakelike robots and other extended articulated bodies is less studied and is still evolving. This paper presents a novel optimization algorithm, derived using calculus of variation, for the motion planning of a hyper-redundant robot where the motion of one end (head) is an arbitrary desired path. The algorithm computes the motion of all the joints in the hyper-redundant robot in a way such that all its links avoid all obstacles present in the environment. The algorithm is purely geometric in nature, and it is shown that the motion in free space and in the vicinity of obstacles appears to be more natural. The paper presents the general theoretical development and numerical simulations results. It also presents validating results from experiments with a 12-degree-of-freedom (DOF) planar hyper-redundant robot moving in a known obstacle field.


2013 ◽  
Vol 19 (1) ◽  
pp. 23-37 ◽  
Author(s):  
Ramon Garcia-Hernandez ◽  
Jose A. Ruz-Hernandez ◽  
Edgar N. Sanchez ◽  
Maarouf Saad

Author(s):  
Yue Shigang

Abstract The significant effect of initial configurations of flexible redundant robot manipulators is analyzed in the paper. It is found that the endpoint vibrations of a flexible redundant manipulator are quite different while performing the same endpoint trajectory starting from different initial configurations. Thus an optimal initial configuration with lower vibrations is found based on analysis before the manipulator starts to move. Only small and acceptable vibrations can be stimulated if the flexible redundant manipulator starts to move from the optimal configuration. Lots of computer time can be saved compared with optimal joint planning method. The method can be used in real-time control.


2016 ◽  
Vol 13 (6) ◽  
pp. 172988141666678
Author(s):  
Hongxing Wang ◽  
Ruifeng Li ◽  
Yunfeng Gao ◽  
Chuqing Cao ◽  
Lianzheng Ge

A whole resolved motion rate control algorithm designed for mobile dual-arm redundant robots is presented in this article. Based on this algorithm, the end-effector movements of the dual arms of the mobile dual-arm redundant robot can be decomposed into the movements of the two driving wheels of the differential driving platform and the movements of the dual-arm each joint of this robot harmoniously. The influence of the redundancies of the single- and dual-arm robots on the operation based on the fixed- and differential-driving platforms, which are then based on the whole resolved motion rate control algorithm, is studied after building their motion models. Some comparisons are made to show the advantages of this algorithm on the entire modeling of the complicated robotic system and the influences of the redundancy. First, the comparison of the simulation results between the fixed single-arm robot and the mobile single-arm robot is presented. Second, a comparison of the simulation results between the mobile single-arm robot and the mobile dual-arm robots is shown. Compared with the mobile single-arm robot and the fixed dual-arm robot based on this algorithm, the mobile dual-arm robot has more redundancy and can simultaneously track and operate different objects. Moreover, the mobile dual-arm redundant robot has better smoothness, more flexibility, larger operational space, and more harmonious cooperation between the two arms and the differential driving platform during the entire mobile operational process.


Sign in / Sign up

Export Citation Format

Share Document