Genetic programming approach to learning multi-pass heuristics for resource constrained job scheduling

Author(s):  
Su Nguyen ◽  
Dhananjay Thiruvady ◽  
Andreas Ernst ◽  
Damminda Alahakoon
Author(s):  
Tetsuhiro Miyahara ◽  
◽  
Tetsuji Kuboyama ◽  

We apply a genetic programming approach to learning of glycan motifs by using tag tree patterns and various fitness functions. Tag tree patterns obtained from some glycan data show characteristic tree structures. We examine the effects of using various fitness functions on GP processes and obtained glycan motifs. We also show that our method is applicable to tree structured data other than glycan data.


2016 ◽  
Vol 24 (1) ◽  
pp. 143-182 ◽  
Author(s):  
Harith Al-Sahaf ◽  
Mengjie Zhang ◽  
Mark Johnston

In the computer vision and pattern recognition fields, image classification represents an important yet difficult task. It is a challenge to build effective computer models to replicate the remarkable ability of the human visual system, which relies on only one or a few instances to learn a completely new class or an object of a class. Recently we proposed two genetic programming (GP) methods, one-shot GP and compound-GP, that aim to evolve a program for the task of binary classification in images. The two methods are designed to use only one or a few instances per class to evolve the model. In this study, we investigate these two methods in terms of performance, robustness, and complexity of the evolved programs. We use ten data sets that vary in difficulty to evaluate these two methods. We also compare them with two other GP and six non-GP methods. The results show that one-shot GP and compound-GP outperform or achieve results comparable to competitor methods. Moreover, the features extracted by these two methods improve the performance of other classifiers with handcrafted features and those extracted by a recently developed GP-based method in most cases.


2009 ◽  
Vol 18 (05) ◽  
pp. 757-781 ◽  
Author(s):  
CÉSAR L. ALONSO ◽  
JOSÉ LUIS MONTAÑA ◽  
JORGE PUENTE ◽  
CRUZ ENRIQUE BORGES

Tree encodings of programs are well known for their representative power and are used very often in Genetic Programming. In this paper we experiment with a new data structure, named straight line program (slp), to represent computer programs. The main features of this structure are described, new recombination operators for GP related to slp's are introduced and a study of the Vapnik-Chervonenkis dimension of families of slp's is done. Experiments have been performed on symbolic regression problems. Results are encouraging and suggest that the GP approach based on slp's consistently outperforms conventional GP based on tree structured representations.


Sign in / Sign up

Export Citation Format

Share Document