scholarly journals Towards Systematically Deriving Defence Mechanisms from Functional Requirements of Cyber-Physical Systems

Author(s):  
Cheah Huei Yoong ◽  
Venkata Reddy Palleti ◽  
Arlindo Silva ◽  
Christopher M. Poskitt
Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 4075 ◽  
Author(s):  
Ali Balador ◽  
Anis Kouba ◽  
Dajana Cassioli ◽  
Fotis Foukalas ◽  
Ricardo Severino ◽  
...  

Cooperative Cyber-Physical Systems (Co-CPSs) can be enabled using wireless communication technologies, which in principle should address reliability and safety challenges. Safety for Co-CPS enabled by wireless communication technologies is a crucial aspect and requires new dedicated design approaches. In this paper, we provide an overview of five Co-CPS use cases, as introduced in our SafeCOP EU project, and analyze their safety design requirements. Next, we provide a comprehensive analysis of the main existing wireless communication technologies giving details about the protocols developed within particular standardization bodies. We also investigate to what extent they address the non-functional requirements in terms of safety, security and real time, in the different application domains of each use case. Finally, we discuss general recommendations about the use of different wireless communication technologies showing their potentials in the selected real-world use cases. The discussion is provided under consideration in the 5G standardization process within 3GPP, whose current efforts are inline to current gaps in wireless communications protocols for Co-CPSs including many future use cases.


2011 ◽  
Vol 8 (4) ◽  
pp. 1277-1301 ◽  
Author(s):  
Zhigang Gao ◽  
Haixia Xia ◽  
Guojun Dai

The development of automotive cyber-physical systems (CPS) software needs to consider not only functional requirements, but also non-functional requirements and the interaction with physical environment. In this paper, a model-based software development method for automotive CPS (MoBDAC) is presented. The main contributions of this paper are threefold. First, MoBDAC covers the whole development workflow of automotive CPS software from modeling and simulation to code generation. Automatic tools are used to improve the development efficiency. Second, MoBDAC extracts nonfunctional requirements and deals with them in the implementation model level and source code level, which helps to correctly manage and meet non-functional requirements. Third, MoBDAC defines three kinds of relations between uncertain physical environment events and software internal actions in automotive CPS, and uses Model Modifier to integrate the interaction with physical environment. Moreover, we illustrate the development workflow of MoBDAC by an example of a power window development.


2016 ◽  
Vol 64 (3) ◽  
Author(s):  
Roopak Sinha ◽  
Cheng Pang ◽  
Gerardo Santillán Martínez ◽  
Valeriy Vyatkin

AbstractIndustrial cyber-physical systems require complex software to orchestrate heterogeneous mechatronic components and control physical processes. This software is typically developed and refined iteratively in a model-driven fashion. Testing such multi-dimensional systems is extremely difficult as subsequent refinements may not correspond accurately with previous system models.We propose a framework to generate test-cases from functional requirements at all stages in the model-driven engineering process. A requirements ontology initially created during requirements engineering is iteratively refined such that test-cases can be generated automatically. An industrial water process system case study illustrates the strengths of the proposed formalism. We also present an automatic test-case generation and execution tool called REBATE (REquirements Based Automatic Testing Engine).


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Sign in / Sign up

Export Citation Format

Share Document