Deep Energy Factorization Model for Demographic Prediction

2020 ◽  
Vol 12 (1) ◽  
pp. 1-16
Author(s):  
Chih-Te Lai ◽  
Cheng-Te Li ◽  
Shou-De Lin
Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


2021 ◽  
pp. 1-13
Author(s):  
Yikai Zhang ◽  
Yong Peng ◽  
Hongyu Bian ◽  
Yuan Ge ◽  
Feiwei Qin ◽  
...  

Concept factorization (CF) is an effective matrix factorization model which has been widely used in many applications. In CF, the linear combination of data points serves as the dictionary based on which CF can be performed in both the original feature space as well as the reproducible kernel Hilbert space (RKHS). The conventional CF treats each dimension of the feature vector equally during the data reconstruction process, which might violate the common sense that different features have different discriminative abilities and therefore contribute differently in pattern recognition. In this paper, we introduce an auto-weighting variable into the conventional CF objective function to adaptively learn the corresponding contributions of different features and propose a new model termed Auto-Weighted Concept Factorization (AWCF). In AWCF, on one hand, the feature importance can be quantitatively measured by the auto-weighting variable in which the features with better discriminative abilities are assigned larger weights; on the other hand, we can obtain more efficient data representation to depict its semantic information. The detailed optimization procedure to AWCF objective function is derived whose complexity and convergence are also analyzed. Experiments are conducted on both synthetic and representative benchmark data sets and the clustering results demonstrate the effectiveness of AWCF in comparison with the related models.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 88
Author(s):  
N. Baggyalakshmi ◽  
A. Kavitha ◽  
A. Marimuthu

With the aim of identifying the user’s preferences, Content propagation modeling from the micro-blogging sites aids diverse organizations. In existing studies, four user behavior aspects were used by the content propagation model that is to say topic virality, user’s position, user susceptibility and user virality. The propagation occurrences are signified as a tensor factorization model so-called V2S is presented with the aim of deriving the behavioral aspects via which the content propagation is designed. On the other hand, it doesn’t comprise the linguistic patterns in the content that decreases the performance of the content propagation. Moreover, by utilizing advanced tensor approaches, the factorization structure is improved. Therefore the performance of the complete system is decreased meaningfully. With the aim of overcoming the aforesaid problems, Enhanced V2S (EV2S) Tensor Factorization framework is presented in this research that make use of the Probabilistic Latent Tensor Factorization (PLTF) as well as Non-negative Tensor Factorization (NTF) in order to derive the behavioral facets. NTF is presented for decreasing the content propagation errors. By making use of fast gradient descent technique, the unrestrained issue, which happens in this model is solved. This research system identifies the reposts as well as re-tweets in huge datasets proficiently with minimum processing time. From the experimentation outcomes, it is proved that the EV2S-PLTF tensor factorization performs better when compared to the previous tensor frameworks.


Author(s):  
Hossein A. Rahmani ◽  
Mohammad Aliannejadi ◽  
Sajad Ahmadian ◽  
Mitra Baratchi ◽  
Mohsen Afsharchi ◽  
...  

Author(s):  
ChunYan Yin ◽  
YongHeng Chen ◽  
Wanli Zuo

AbstractPreference-based recommendation systems analyze user-item interactions to reveal latent factors that explain our latent preferences for items and form personalized recommendations based on the behavior of others with similar tastes. Most of the works in the recommendation systems literature have been developed under the assumption that user preference is a static pattern, although user preferences and item attributes may be changed through time. To achieve this goal, we develop an Evolutionary Social Poisson Factorization (EPF$$\_$$ _ Social) model, a new Bayesian factorization model that can effectively model the smoothly drifting latent factors using Conjugate Gamma–Markov chains. Otherwise, EPF$$\_$$ _ Social can obtain the impact of friends on social network for user’ latent preferences. We studied our models with two large real-world datasets, and demonstrated that our model gives better predictive performance than state-of-the-art static factorization models.


Sign in / Sign up

Export Citation Format

Share Document