Building Arabic Paraphrasing Benchmark based on Transformation Rules

Author(s):  
Marwah Alian ◽  
Arafat Awajan ◽  
Ahmad Al-Hasan ◽  
Raeda Akuzhia

Measuring semantic similarity between short texts is an important task in many applications of natural language processing, such as paraphrasing identification. This process requires a benchmark of sentence pairs that are labeled by Arab linguists and considered a standard that can be used by researchers when evaluating their results. This research describes an Arabic paraphrasing benchmark to be a good standard for evaluation algorithms that are developed to measure semantic similarity for Arabic sentences to detect paraphrasing in the same language. The transformed sentences are in accordance with a set of rules for Arabic paraphrasing. These sentences are constructed from the words in the Arabic word semantic similarity dataset and from different Arabic books, educational texts, and lexicons. The proposed benchmark consists of 1,010 sentence pairs wherein each pair is tagged with scores determining semantic similarity and paraphrasing. The quality of the data is assessed using statistical analysis for the distribution of the sentences over the Arabic transformation rules and exploration through hierarchical clustering (HCL). Our exploration using HCL shows that the sentences in the proposed benchmark are grouped into 27 clusters representing different subjects. The inter-annotator agreement measures show a moderate agreement for the annotations of the graduate students and a poor reliability for the annotations of the undergraduate students.


2021 ◽  
Vol 48 (4) ◽  
pp. 41-44
Author(s):  
Dena Markudova ◽  
Martino Trevisan ◽  
Paolo Garza ◽  
Michela Meo ◽  
Maurizio M. Munafo ◽  
...  

With the spread of broadband Internet, Real-Time Communication (RTC) platforms have become increasingly popular and have transformed the way people communicate. Thus, it is fundamental that the network adopts traffic management policies that ensure appropriate Quality of Experience to users of RTC applications. A key step for this is the identification of the applications behind RTC traffic, which in turn allows to allocate adequate resources and make decisions based on the specific application's requirements. In this paper, we introduce a machine learning-based system for identifying the traffic of RTC applications. It builds on the domains contacted before starting a call and leverages techniques from Natural Language Processing (NLP) to build meaningful features. Our system works in real-time and is robust to the peculiarities of the RTP implementations of different applications, since it uses only control traffic. Experimental results show that our approach classifies 5 well-known meeting applications with an F1 score of 0.89.



AERA Open ◽  
2021 ◽  
Vol 7 ◽  
pp. 233285842110286
Author(s):  
Kylie L. Anglin ◽  
Vivian C. Wong ◽  
Arielle Boguslav

Though there is widespread recognition of the importance of implementation research, evaluators often face intense logistical, budgetary, and methodological challenges in their efforts to assess intervention implementation in the field. This article proposes a set of natural language processing techniques called semantic similarity as an innovative and scalable method of measuring implementation constructs. Semantic similarity methods are an automated approach to quantifying the similarity between texts. By applying semantic similarity to transcripts of intervention sessions, researchers can use the method to determine whether an intervention was delivered with adherence to a structured protocol, and the extent to which an intervention was replicated with consistency across sessions, sites, and studies. This article provides an overview of semantic similarity methods, describes their application within the context of educational evaluations, and provides a proof of concept using an experimental study of the impact of a standardized teacher coaching intervention.



Vector representations for language have been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the effectiveness of word vector representations for the problem of Sentiment Analysis. In particular, we target three sub-tasks namely sentiment words extraction, polarity of sentiment words detection, and text sentiment prediction. We investigate the effectiveness of vector representations over different text data and evaluate the quality of domain-dependent vectors. Vector representations has been used to compute various vector-based features and conduct systematically experiments to demonstrate their effectiveness. Using simple vector based features can achieve better results for text sentiment analysis of APP.



Author(s):  
Saravanakumar Kandasamy ◽  
Aswani Kumar Cherukuri

Semantic similarity quantification between concepts is one of the inevitable parts in domains like Natural Language Processing, Information Retrieval, Question Answering, etc. to understand the text and their relationships better. Last few decades, many measures have been proposed by incorporating various corpus-based and knowledge-based resources. WordNet and Wikipedia are two of the Knowledge-based resources. The contribution of WordNet in the above said domain is enormous due to its richness in defining a word and all of its relationship with others. In this paper, we proposed an approach to quantify the similarity between concepts that exploits the synsets and the gloss definitions of different concepts using WordNet. Our method considers the gloss definitions, contextual words that are helping in defining a word, synsets of contextual word and the confidence of occurrence of a word in other word’s definition for calculating the similarity. The evaluation based on different gold standard benchmark datasets shows the efficiency of our system in comparison with other existing taxonomical and definitional measures.



1990 ◽  
Vol 17 (1) ◽  
pp. 21-29
Author(s):  
C. Korycinski ◽  
Alan F. Newell

The task of producing satisfactory indexes by automatic means has been tackled on two fronts: by statistical analysis of text and by attempting content analysis of the text in much the same way as a human indexcr does. Though statistical techniques have a lot to offer for free-text database systems, neither method has had much success with back-of-the-bopk indexing. This review examines some problems associated with the application of natural-language processing techniques to book texts.



2020 ◽  
Vol 8 ◽  
Author(s):  
Majed Al-Jefri ◽  
Roger Evans ◽  
Joon Lee ◽  
Pietro Ghezzi

Objective: Many online and printed media publish health news of questionable trustworthiness and it may be difficult for laypersons to determine the information quality of such articles. The purpose of this work was to propose a methodology for the automatic assessment of the quality of health-related news stories using natural language processing and machine learning.Materials and Methods: We used a database from the website HealthNewsReview.org that aims to improve the public dialogue about health care. HealthNewsReview.org developed a set of criteria to critically analyze health care interventions' claims. In this work, we attempt to automate the evaluation process by identifying the indicators of those criteria using natural language processing-based machine learning on a corpus of more than 1,300 news stories. We explored features ranging from simple n-grams to more advanced linguistic features and optimized the feature selection for each task. Additionally, we experimented with the use of pre-trained natural language model BERT.Results: For some criteria, such as mention of costs, benefits, harms, and “disease-mongering,” the evaluation results were promising with an F1 measure reaching 81.94%, while for others the results were less satisfactory due to the dataset size, the need of external knowledge, or the subjectivity in the evaluation process.Conclusion: These used criteria are more challenging than those addressed by previous work, and our aim was to investigate how much more difficult the machine learning task was, and how and why it varied between criteria. For some criteria, the obtained results were promising; however, automated evaluation of the other criteria may not yet replace the manual evaluation process where human experts interpret text senses and make use of external knowledge in their assessment.



2021 ◽  
Author(s):  
Sena Chae ◽  
Jiyoun Song ◽  
Marietta Ojo ◽  
Maxim Topaz

The goal of this natural language processing (NLP) study was to identify patients in home healthcare with heart failure symptoms and poor self-management (SM). The preliminary lists of symptoms and poor SM status were identified, NLP algorithms were used to refine the lists, and NLP performance was evaluated using 2.3 million home healthcare clinical notes. The overall precision to identify patients with heart failure symptoms and poor SM status was 0.86. The feasibility of methods was demonstrated to identify patients with heart failure symptoms and poor SM documented in home healthcare notes. This study facilitates utilizing key symptom information and patients’ SM status from unstructured data in electronic health records. The results of this study can be applied to better individualize symptom management to support heart failure patients’ quality-of-life.



2010 ◽  
Vol 16 (4) ◽  
pp. 417-437 ◽  
Author(s):  
TIM VAN DE CRUYS

AbstractThe distributional similarity methods have proven to be a valuable tool for the induction of semantic similarity. Until now, most algorithms use two-way co-occurrence data to compute the meaning of words. Co-occurrence frequencies, however, need not be pairwise. One can easily imagine situations where it is desirable to investigate co-occurrence frequencies of three modes and beyond. This paper will investigate tensor factorization methods to build a model of three-way co-occurrences. The approach is applied to the problem of selectional preference induction, and automatically evaluated in a pseudo-disambiguation task. The results show that tensor factorization, and non-negative tensor factorization in particular, is a promising tool for Natural Language Processing (nlp).



Author(s):  
Rahul Sharan Renu ◽  
Gregory Mocko

The objective of this research is to investigate the requirements and performance of parts-of-speech tagging of assembly work instructions. Natural Language Processing of assembly work instructions is required to perform data mining with the objective of knowledge reuse. Assembly work instructions are key process engineering elements that allow for predictable assembly quality of products and predictable assembly lead times. Authoring of assembly work instructions is a subjective process. It has been observed that most assembly work instructions are not grammatically complete sentences. It is hypothesized that this can lead to false parts-of-speech tagging (by Natural Language Processing tools). To test this hypothesis, two parts-of-speech taggers are used to tag 500 assembly work instructions (obtained from the automotive industry). The first parts-of-speech tagger is obtained from Natural Language Processing Toolkit (nltk.org) and the second parts-of-speech tagger is obtained from Stanford Natural Language Processing Group (nlp.stanford.edu). For each of these taggers, two experiments are conducted. In the first experiment, the assembly work instructions are input to the each tagger in raw form. In the second experiment, the assembly work instructions are preprocessed to make them grammatically complete, and then input to the tagger. It is found that the Stanford Natural Language Processing tagger with the preprocessed assembly work instructions produced the least number of false parts-of-speech tags.



Sign in / Sign up

Export Citation Format

Share Document