scholarly journals Low-cost SPAD sensing for non-line-of-sight tracking, material classification and depth imaging

2021 ◽  
Vol 40 (4) ◽  
pp. 1-12
Author(s):  
Clara Callenberg ◽  
Zheng Shi ◽  
Felix Heide ◽  
Matthias B. Hullin
2021 ◽  
Vol 40 (4) ◽  
pp. 1-12
Author(s):  
Clara Callenberg ◽  
Zheng Shi ◽  
Felix Heide ◽  
Matthias B. Hullin

Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3464 ◽  
Author(s):  
Valentín Barral ◽  
Carlos J. Escudero ◽  
José A. García-Naya ◽  
Roberto Maneiro-Catoira

Indoor location systems based on ultra-wideband (UWB) technology have become very popular in recent years following the introduction of a number of low-cost devices on the market capable of providing accurate distance measurements. Although promising, UWB devices also suffer from the classic problems found when working in indoor scenarios, especially when there is no a clear line-of-sight (LOS) between the emitter and the receiver, causing the estimation error to increase up to several meters. In this work, machine learning (ML) techniques are employed to analyze several sets of real UWB measurements, captured in different scenarios, to try to identify the measurements facing non-line-of-sight (NLOS) propagation condition. Additionally, an ulterior process is carried out to mitigate the deviation of these measurements from the actual distance value between the devices. The results show that ML techniques are suitable to identify NLOS propagation conditions and also to mitigate the error of the estimates when there is LOS between the emitter and the receiver.


2021 ◽  
Author(s):  
Tian Shi ◽  
Li Liangsheng ◽  
He Cai ◽  
Xianli Zhu ◽  
Qingfan Shi ◽  
...  

Abstract Non-line-of-sight (NLOS) imaging makes it possible to reconstruct hidden objects around corners, which is of fundamental importance in various fields. Despite recent advances, NLOS imaging has not been studied in certain typical random scenarios, such as tortuous corridors filled with random media. We dub such a category of complex environment “random corridor”, and propose a reduced spatial- and ensemble-speckle intensity correlation (RSESIC) method to image a moving object obscured by a random corridor. Experimental results show that the method can reconstruct image of a centimeter-sized hidden object with a sub-millimeter resolution by a low-cost digital camera. The imaging capability depends on three system parameters and can be characterized by the correlation fidelity (CF). Furthermore, the RSESIC method is able to recover the image of objects even for a single pixel containing the contribution of about $10^2$ speckle grains, which overcomes the theoretical limitation of traditional speckle imaging methods. Last but not least, when the power attenuation of speckle intensity leads to the serious deterioration of CF, the image of hidden objects can still be reconstructed by the corrected intensity correlation.


Author(s):  
Nina Siti Aminah ◽  
Muhamamad Reza Ramadhani Raharjo ◽  
Maman Budiman

Technology makes it easier for us to communicate over a distance. However, there are still many remote areas that find it difficult to communicate. This is due to the fact that communication infrastructure in some areas is expensive to build while the profit will be low. This paper proposes to combine voice over internet protocol (VoIP) over mesh network implemented on openWRT router. The routers are performing mesh functions. We set up a VoIP server on a router and enabled session initiation protocol (SIP) clients on other routers. Therefore, we only need routers as a means of communication. The experiment showed very good results, in the line-of-sight (LOS) condition, they are limited to reception distances up to 145 meters while in the non-line-of-sight (NLOS) condition, they are limited to reception distances up to 55 meters.


2007 ◽  
Author(s):  
Jonathon Emis ◽  
Bryan Huang ◽  
Timothy Jones ◽  
Mei Li ◽  
Don Tumbocon

Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 230 ◽  
Author(s):  
Slavisa Tomic ◽  
Marko Beko

This work addresses the problem of target localization in adverse non-line-of-sight (NLOS) environments by using received signal strength (RSS) and time of arrival (TOA) measurements. It is inspired by a recently published work in which authors discuss about a critical distance below and above which employing combined RSS-TOA measurements is inferior to employing RSS-only and TOA-only measurements, respectively. Here, we revise state-of-the-art estimators for the considered target localization problem and study their performance against their counterparts that employ each individual measurement exclusively. It is shown that the hybrid approach is not the best one by default. Thus, we propose a simple heuristic approach to choose the best measurement for each link, and we show that it can enhance the performance of an estimator. The new approach implicitly relies on the concept of the critical distance, but does not assume certain link parameters as given. Our simulations corroborate with findings available in the literature for line-of-sight (LOS) to a certain extent, but they indicate that more work is required for NLOS environments. Moreover, they show that the heuristic approach works well, matching or even improving the performance of the best fixed choice in all considered scenarios.


2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Bin Wang ◽  
Ming-Yang Zheng ◽  
Jin-Jian Han ◽  
Xin Huang ◽  
Xiu-Ping Xie ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document