Falsification of Hybrid Systems Using Adaptive Probabilistic Search

2021 ◽  
Vol 31 (3) ◽  
pp. 1-22
Author(s):  
Gidon Ernst ◽  
Sean Sedwards ◽  
Zhenya Zhang ◽  
Ichiro Hasuo

We present and analyse an algorithm that quickly finds falsifying inputs for hybrid systems. Our method is based on a probabilistically directed tree search, whose distribution adapts to consider an increasingly fine-grained discretization of the input space. In experiments with standard benchmarks, our algorithm shows comparable or better performance to existing techniques, yet it does not build an explicit model of a system. Instead, at each decision point within a single trial, it makes an uninformed probabilistic choice between simple strategies to extend the input signal by means of exploration or exploitation. Key to our approach is the way input signal space is decomposed into levels, such that coarse segments are more probable than fine segments. We perform experiments to demonstrate how and why our approach works, finding that a fully randomized exploration strategy performs as well as our original algorithm that exploits robustness. We propose this strategy as a new baseline for falsification and conclude that more discriminative benchmarks are required.

2007 ◽  
Vol 9 (20) ◽  
pp. 2507 ◽  
Author(s):  
Ekaterina I. Izgorodina ◽  
Ching Yeh Lin ◽  
Michelle L. Coote
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yong Liang ◽  
Qi Cui ◽  
Xing Luo ◽  
Zhisong Xie

Rock classification is a significant branch of geology which can help understand the formation and evolution of the planet, search for mineral resources, and so on. In traditional methods, rock classification is usually done based on the experience of a professional. However, this method has problems such as low efficiency and susceptibility to subjective factors. Therefore, it is of great significance to establish a simple, fast, and accurate rock classification model. This paper proposes a fine-grained image classification network combining image cutting method and SBV algorithm to improve the classification performance of a small number of fine-grained rock samples. The method uses image cutting to achieve data augmentation without adding additional datasets and uses image block voting scoring to obtain richer complementary information, thereby improving the accuracy of image classification. The classification accuracy of 32 images is 75%, 68.75%, and 75%. The results show that the method proposed in this paper has a significant improvement in the accuracy of image classification, which is 34.375%, 18.75%, and 43.75% higher than that of the original algorithm. It verifies the effectiveness of the algorithm in this paper and at the same time proves that deep learning has great application value in the field of geology.


Author(s):  
Zhenya Zhang ◽  
Gidon Ernst ◽  
Sean Sedwards ◽  
Paolo Arcaini ◽  
Ichiro Hasuo

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Ren ◽  
Lingling Zeng ◽  
Ran Liu ◽  
Chi Cheng

Current file storage service models for cloud servers assume that users either belong to single layer with different privileges or cannot authorize privileges iteratively. Thus, the access control is not fine-grained and flexible. Besides, most access control methods at cloud servers mainly rely on computationally intensive cryptographic algorithms and, especially, may not be able to support highly dynamic ad hoc groups with addition and removal of group members. In this paper, we propose a scheme called F2AC, which is a lightweight, fine-grained, and flexible access control scheme for file storage in mobile cloud computing. F2AC can not only achieve iterative authorization, authentication with tailored policies, and access control for dynamically changing accessing groups, but also provide access privilege transition and revocation. A new access control model called directed tree with linked leaf model is proposed for further implementations in data structures and algorithms. The extensive analysis is given for justifying the soundness and completeness of F2AC.


Author(s):  
Richard S. Chemock

One of the most common tasks in a typical analysis lab is the recording of images. Many analytical techniques (TEM, SEM, and metallography for example) produce images as their primary output. Until recently, the most common method of recording images was by using film. Current PS/2R systems offer very large capacity data storage devices and high resolution displays, making it practical to work with analytical images on PS/2s, thereby sidestepping the traditional film and darkroom steps. This change in operational mode offers many benefits: cost savings, throughput, archiving and searching capabilities as well as direct incorporation of the image data into reports.The conventional way to record images involves film, either sheet film (with its associated wet chemistry) for TEM or PolaroidR film for SEM and light microscopy. Although film is inconvenient, it does have the highest quality of all available image recording techniques. The fine grained film used for TEM has a resolution that would exceed a 4096x4096x16 bit digital image.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Author(s):  
J. W. Mellowes ◽  
C. M. Chun ◽  
I. A. Aksay

Mullite (3Al2O32SiO2) can be fabricated by transient viscous sintering using composite particles which consist of inner cores of a-alumina and outer coatings of amorphous silica. Powder compacts prepared with these particles are sintered to almost full density at relatively low temperatures (~1300°C) and converted to dense, fine-grained mullite at higher temperatures (>1500°C) by reaction between the alumina core and the silica coating. In order to achieve complete mullitization, optimal conditions for coating alumina particles with amorphous silica must be achieved. Formation of amorphous silica can occur in solution (homogeneous nucleation) or on the surface of alumina (heterogeneous nucleation) depending on the degree of supersaturation of the solvent in which the particles are immersed. Successful coating of silica on alumina occurs when heterogeneous nucleation is promoted and homogeneous nucleation is suppressed. Therefore, one key to successful coating is an understanding of the factors such as pH and concentration that control silica nucleation in aqueous solutions. In the current work, we use TEM to determine the optimal conditions of this processing.


Author(s):  
W. Coene ◽  
A. Thust ◽  
M. Op de Beeck ◽  
D. Van Dyck

Compared to conventional electron sources, the use of a highly coherent field-emission gun (FEG) in TEM improves the information resolution considerably. A direct interpretation of this extra information, however, is hampered since amplitude and phase of the electron wave are scrambled in a complicated way upon transfer from the specimen exit plane through the objective lens towards the image plane. In order to make the additional high-resolution information interpretable, a phase retrieval procedure is applied, which yields the aberration-corrected electron wave from a focal series of HRTEM images (Coene et al, 1992).Kirkland (1984) tackled non-linear image reconstruction using a recursive least-squares formalism in which the electron wave is modified stepwise towards the solution which optimally matches the contrast features in the experimental through-focus series. The original algorithm suffers from two major drawbacks : first, the result depends strongly on the quality of the initial guess of the first step, second, the processing time is impractically high.


Author(s):  
C. P. Doğan ◽  
R. D. Wilson ◽  
J. A. Hawk

Capacitor Discharge Welding is a rapid solidification technique for joining conductive materials that results in a narrow fusion zone and almost no heat affected zone. As a result, the microstructures and properties of the bulk materials are essentially continuous across the weld interface. During the joining process, one of the materials to be joined acts as the anode and the other acts as the cathode. The anode and cathode are brought together with a concomitant discharge of a capacitor bank, creating an arc which melts the materials at the joining surfaces and welds them together (Fig. 1). As the electrodes impact, the arc is extinguished, and the molten interface cools at rates that can exceed 106 K/s. This process results in reduced porosity in the fusion zone, a fine-grained weldment, and a reduced tendency for hot cracking.At the U.S. Bureau of Mines, we are currently examining the possibilities of using capacitor discharge welding to join dissimilar metals, metals to intermetallics, and metals to conductive ceramics. In this particular study, we will examine the microstructural characteristics of iron-aluminum welds in detail, focussing our attention primarily on interfaces produced during the rapid solidification process.


Sign in / Sign up

Export Citation Format

Share Document