scholarly journals Random-Walk Graph Embeddings and the Influence of Edge Weighting Strategies in Community Detection Tasks

2021 ◽  
Author(s):  
Andreas Kosmatopoulos ◽  
Kostas Loumponias ◽  
Despoina Chatzakou ◽  
Theodora Tsikrika ◽  
Stefanos Vrochidis ◽  
...  
2017 ◽  
Vol 31 (15) ◽  
pp. 1750121 ◽  
Author(s):  
Fang Hu ◽  
Youze Zhu ◽  
Yuan Shi ◽  
Jianchao Cai ◽  
Luogeng Chen ◽  
...  

In this paper, based on Walktrap algorithm with the idea of random walk, and by selecting the neighbor communities, introducing improved signed probabilistic mixture (SPM) model and considering the edges within the community as positive links and the edges between the communities as negative links, a novel algorithm Walktrap-SPM for detecting overlapping community is proposed. This algorithm not only can identify the overlapping communities, but also can greatly increase the objectivity and accuracy of the results. In order to verify the accuracy, the performance of this algorithm is tested on several representative real-world networks and a set of computer-generated networks based on LFR benchmark. The experimental results indicate that this algorithm can identify the communities accurately, and it is more suitable for overlapping community detection. Compared with Walktrap, SPM and LMF algorithms, the presented algorithm can acquire higher values of modularity and NMI. Moreover, this new algorithm has faster running time than SPM and LMF algorithms.


2019 ◽  
Vol 62 (5) ◽  
pp. 2067-2101
Author(s):  
Yuchen Bian ◽  
Dongsheng Luo ◽  
Yaowei Yan ◽  
Wei Cheng ◽  
Wei Wang ◽  
...  

2017 ◽  
Vol 28 (09) ◽  
pp. 1750111
Author(s):  
Yan Wang ◽  
Ding Juan Wu ◽  
Fang Lv ◽  
Meng Long Su

We investigate the concurrent dynamics of biased random walks and the activity-driven network, where the preferential transition probability is in terms of the edge-weighting parameter. We also obtain the analytical expressions for stationary distribution and the coverage function in directed and undirected networks, all of which depend on the weight parameter. Appropriately adjusting this parameter, more effective search strategy can be obtained when compared with the unbiased random walk, whether in directed or undirected networks. Since network weights play a significant role in the diffusion process.


Author(s):  
Makoto Okuda ◽  
Shinichi Satoh ◽  
Yoichi Sato ◽  
Yutaka Kidawara

2017 ◽  
Vol 31 (14) ◽  
pp. 1750162 ◽  
Author(s):  
Tianren Ma ◽  
Zhengyou Xia

Currently, with the rapid development of information technology, the electronic media for social communication is becoming more and more popular. Discovery of communities is a very effective way to understand the properties of complex networks. However, traditional community detection algorithms consider the structural characteristics of a social organization only, with more information about nodes and edges wasted. In the meanwhile, these algorithms do not consider each node on its merits.Label propagation algorithm (LPA) is a near linear time algorithm which aims to find the community in the network. It attracts many scholars owing to its high efficiency. In recent years, there are more improved algorithms that were put forward based on LPA. In this paper, an improved LPA based on random walk and node importance (NILPA) is proposed. Firstly, a list of node importance is obtained through calculation. The nodes in the network are sorted in descending order of importance. On the basis of random walk, a matrix is constructed to measure the similarity of nodes and it avoids the random choice in the LPA. Secondly, a new metric IAS (importance and similarity) is calculated by node importance and similarity matrix, which we can use to avoid the random selection in the original LPA and improve the algorithm stability.Finally, a test in real-world and synthetic networks is given. The result shows that this algorithm has better performance than existing methods in finding community structure.


2021 ◽  
Vol 103 (2) ◽  
Author(s):  
Aditya Tandon ◽  
Aiiad Albeshri ◽  
Vijey Thayananthan ◽  
Wadee Alhalabi ◽  
Filippo Radicchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document