Implementation, Characterization and Application of Path Changing Switch based Arbiter PUF on FPGA as a lightweight Security Primitive for IoT

2022 ◽  
Vol 27 (3) ◽  
pp. 1-26
Author(s):  
Mahabub Hasan Mahalat ◽  
Suraj Mandal ◽  
Anindan Mondal ◽  
Bibhash Sen ◽  
Rajat Subhra Chakraborty

Secure authentication of any Internet-of-Things (IoT) device becomes the utmost necessity due to the lack of specifically designed IoT standards and intrinsic vulnerabilities with limited resources and heterogeneous technologies. Despite the suitability of arbiter physically unclonable function (APUF) among other PUF variants for the IoT applications, implementing it on field-programmable gate arrays (FPGAs) is challenging. This work presents the complete characterization of the path changing switch (PCS) 1 based APUF on two different families of FPGA, like Spartan-3E (90 nm CMOS) and Artix-7 (28 nm CMOS). A comprehensive study of the existing tuning concept for programmable delay logic (PDL) based APUF implemented on FPGA is presented, leading to establishment of its practical infeasibility. We investigate the entropy, randomness properties of the PCS based APUF suitable for practical applications, and the effect of temperature variation signifying the adequate tolerance against environmental variation. The XOR composition of PCS based APUF is introduced to boost performance and security. The robustness of the PCS based APUF against machine learning based modeling attack is evaluated, showing similar characteristics as the conventional APUF. Experimental results validate the efficacy of PCS based APUF with a little hardware footprint removing the paucity of lightweight security primitive for IoT.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Takanori Machida ◽  
Dai Yamamoto ◽  
Mitsugu Iwamoto ◽  
Kazuo Sakiyama

In general, conventional Arbiter-based Physically Unclonable Functions (PUFs) generate responses with low unpredictability. TheN-XOR Arbiter PUF, proposed in 2007, is a well-known technique for improving this unpredictability. In this paper, we propose a novel design for Arbiter PUF, calledDouble Arbiter PUF, to enhance the unpredictability on field programmable gate arrays (FPGAs), and we compare our design to conventionalN-XOR Arbiter PUFs. One metric for judging the unpredictability of responses is to measure their tolerance to machine-learning attacks. Although our previous work showed the superiority of Double Arbiter PUFs regarding unpredictability, its details were not clarified. We evaluate the dependency on the number of training samples for machine learning, and we discuss the reason why Double Arbiter PUFs are more tolerant than theN-XOR Arbiter PUFs by evaluatingintrachip variation. Further, the conventional Arbiter PUFs and proposed Double Arbiter PUFs are evaluated according to other metrics, namely, their uniqueness, randomness, and steadiness. We demonstrate that3-1 Double Arbiter PUFarchives the best performance overall.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2108
Author(s):  
Mohamed Yassine Allani ◽  
Jamel Riahi ◽  
Silvano Vergura ◽  
Abdelkader Mami

The development and optimization of a hybrid system composed of photovoltaic panels, wind turbines, converters, and batteries connected to the grid, is first presented. To generate the maximum power, two maximum power point tracker controllers based on fuzzy logic are required and a battery controller is used for the regulation of the DC voltage. When the power source varies, a high-voltage supply is incorporated (high gain DC-DC converter controlled by fuzzy logic) to boost the 24 V provided by the DC bus to the inverter voltage of about 400 V and to reduce energy losses to maximize the system performance. The inverter and the LCL filter allow for the integration of this hybrid system with AC loads and the grid. Moreover, a hardware solution for the field programmable gate arrays-based implementation of the controllers is proposed. The combination of these controllers was synthesized using the Integrated Synthesis Environment Design Suite software (Version: 14.7, City: Tunis, Country: Tunisia) and was successfully implemented on Field Programmable Gate Arrays Spartan 3E. The innovative design provides a suitable architecture based on power converters and control strategies that are dedicated to the proposed hybrid system to ensure system reliability. This implementation can provide a high level of flexibility that can facilitate the upgrade of a control system by simply updating or modifying the proposed algorithm running on the field programmable gate arrays board. The simulation results, using Matlab/Simulink (Version: 2016b, City: Tunis, Country: Tunisia, verify the efficiency of the proposed solution when the environmental conditions change. This study focused on the development and optimization of an electrical system control strategy to manage the produced energy and to coordinate the performance of the hybrid energy system. The paper proposes a combined photovoltaic and wind energy system, supported by a battery acting as an energy storage system. In addition, a bi-directional converter charges/discharges the battery, while a high-voltage gain converter connects them to the DC bus. The use of a battery is useful to compensate for the mismatch between the power demanded by the load and the power generated by the hybrid energy systems. The proposed field programmable gate arrays (FPGA)-based controllers ensure a fast time response by making control executable in real time.


Sign in / Sign up

Export Citation Format

Share Document