Utilizing microarrays of bacterial genes

2001 ◽  
Vol 21 (1) ◽  
pp. 23-25 ◽  
Author(s):  
O. Colin Stine
Keyword(s):  
Author(s):  
Е.Н. Ильина ◽  
Е.И. Олехнович ◽  
А.В. Павленко

С течением времени подходы к изучению резистентности к антибиотикам трансформировались от сосредоточения на выделенных в виде чистой культуры патогенных микроорганизмах к исследованию резистентности на уровне микробных сообществ, составляющих биотопы человека и окружающей среды. По мере того, как продвигается изучение устойчивости к антибиотикам, возникает необходимость использования комплексного подхода для улучшения информирования мирового сообщества о наблюдаемых тенденциях в этой области. Все более очевидным становится то, что, хотя не все гены резистентности могут географически и филогенетически распространяться, угроза, которую они представляют, действительно серьезная и требует комплексных междисциплинарных исследований. В настоящее время резистентность к антибиотикам среди патогенов человека стала основной угрозой в современной медицине, и существует значительный интерес к определению ниши, в которых бактерии могут получить гены антибиотикорезистентности, и механизмов их передачи. В данном обзоре мы рассматриваем проблемы, возникшие на фоне широкого использования человечеством антибактериальных препаратов, в свете формирования микрофлорой кишечника резервуара генов резистентности. Over the time, studies of antibiotic resistance have transformed from focusing on pathogenic microorganisms isolated as a pure culture to analysis of resistance at the level of microbial communities that constitute human and environmental biotopes. Advancing studies of antibiotic resistance require an integrated approach to enhance availability of information about observed tendencies in this field to the global community. It becomes increasingly obvious that, even though not all resistance genes can geographically and phylogenetically spread, the threat they pose is indeed serious and requires complex interdisciplinary research. Currently, the antibiotic resistance of human pathogens has become a challenge to modern medicine, which is now focusing on determining a potential source for bacterial genes of drug resistance and mechanisms for the gene transmission. In this review, we discussed problems generated by the widespread use of antibacterial drugs in the light of forming a reservoir of resistance genes by gut microflora.


1984 ◽  
Vol 259 (16) ◽  
pp. 10455-10459
Author(s):  
N R Gilkes ◽  
M L Langsford ◽  
D G Kilburn ◽  
R C Miller ◽  
R A Warren

2021 ◽  
Vol 9 (8) ◽  
pp. 1571
Author(s):  
Rotem Sela ◽  
Sivan Laviad-Shitrit ◽  
Leena Thorat ◽  
Bimalendu B. Nath ◽  
Malka Halpern

Chironomids (Diptera; Chironomidae) are aquatic insects that are abundant in freshwater. We aimed to study the endogenous microbiota composition of Chironomus ramosus larvae that were sampled from the Mutha River and a laboratory culture in India. Furthermore, we performed a metagenomic analysis of the larval microbiome, sampled from the Mutha River. Significant differences were found between the bacterial community composition of C. ramosus larvae that were sampled from the Mutha River and the laboratory culture. A total of 54.7% of the amplicon sequence variants (ASVs) that were identified in the larvae from the Mutha River were unique, compared to only 12.9% of unique ASVs that were identified from the laboratory-reared larvae. The four most abundant phyla across all samples were: Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes, while the nine most abundant genera were: Aeromonas, Alkanindiges, Breznakia, Cetobacterium, Chryseobacterium, Desulfovibrio, Dysgonomonas, Thiothrix, and Vibrio. Moreover, in the metagenomic analysis, we detected bacterial genes and bacterial pathways that demonstrated the ability to degrade different toxic compounds, detoxify metal, and confer resistance to antibiotics and UV radiation, amongst other functions. The results illuminate the fact that there are detoxifying enzymes in the C. ramosus larval microbiome that possibly play a role in protecting the insect in polluted environments.


1995 ◽  
Vol 9 (1) ◽  
pp. 14-28
Author(s):  
L. S. Antonov ◽  
K. P. Dudov ◽  
A. I. Atanassov

2010 ◽  
Vol 62 (1) ◽  
pp. 78-83 ◽  
Author(s):  
Saima Chaudhry ◽  
Muhammad Idrees ◽  
Mateen Izhar ◽  
Arshad Kamal Butt ◽  
Ayyaz Ali Khan

2013 ◽  
Vol 20 ◽  
pp. 109-120 ◽  
Author(s):  
Salah E. Abdel-Ghany ◽  
Irene Day ◽  
Adam L. Heuberger ◽  
Corey D. Broeckling ◽  
Anireddy S.N. Reddy

2021 ◽  
pp. 113659
Author(s):  
Tomoyuki Taguchi ◽  
Machi Ishikawa ◽  
Momoko Ichikawa ◽  
Takashi Tadenuma ◽  
Yuko Hirakawa ◽  
...  

2012 ◽  
Vol 40 (17) ◽  
pp. 8210-8218 ◽  
Author(s):  
Xizeng Mao ◽  
Han Zhang ◽  
Yanbin Yin ◽  
Ying Xu
Keyword(s):  

2016 ◽  
Vol 2 (10) ◽  
pp. e1600492 ◽  
Author(s):  
Roberto Danovaro ◽  
Antonio Dell’Anno ◽  
Cinzia Corinaldesi ◽  
Eugenio Rastelli ◽  
Ricardo Cavicchioli ◽  
...  

Viruses are the most abundant biological entities in the world’s oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document