scholarly journals The Galactic cosmic ray intensity at the evolving Earth and young exoplanets

2020 ◽  
Vol 499 (2) ◽  
pp. 2124-2137
Author(s):  
D Rodgers-Lee ◽  
A A Vidotto ◽  
A M Taylor ◽  
P B Rimmer ◽  
T P Downes

ABSTRACT Cosmic rays may have contributed to the start of life on the Earth. Here, we investigate the evolution of the Galactic cosmic ray spectrum at the Earth from ages t = 0.6−6.0 Gyr. We use a 1D cosmic ray transport model and a 1.5D stellar wind model to derive the evolving wind properties of a solar-type star. At $t=1\,$ Gyr, approximately when life is thought to have begun on the Earth, we find that the intensity of ∼GeV Galactic cosmic rays would have been ∼10 times smaller than the present-day value. At lower kinetic energies, Galactic cosmic ray modulation would have been even more severe. More generally, we find that the differential intensity of low-energy Galactic cosmic rays decreases at younger ages and is well described by a broken power law in solar rotation rate. We provide an analytic formula of our Galactic cosmic ray spectra at the Earth’s orbit for different ages. Our model is also applicable to other solar-type stars with exoplanets orbiting at different radii. Specifically, we use our Galactic cosmic ray spectrum at 20 au for $t=600\,$ Myr to estimate the penetration of cosmic rays in the atmosphere of HR 2562b, a directly imaged exoplanet orbiting a young solar-type star. We find that the majority of particles <0.1 GeV are attenuated at pressures ≳10−5 bar and thus do not reach altitudes below ∼100 km. Observationally constraining the Galactic cosmic ray spectrum in the atmosphere of a warm Jupiter would in turn help constrain the flux of cosmic rays reaching young Earth-like exoplanets.

2021 ◽  
Author(s):  
Donna Rodgers-Lee ◽  
Aline Vidotto ◽  
Amanda Mesquita

<p>Galactic cosmic rays are important for exoplanetary atmospheres. They can contribute to the formation of hazes, prebiotic molecules and atmospheric electrical circuits. A number of so-called fingerprint ions, such as oxonium, have been identified from chemical modelling which are thought to be signatures of ionisation by energetic particles, such as Galactic cosmic rays. These fingerprint ions may be observed in exoplanetary atmospheres with upcoming JWST observations.</p> <p>I will discuss our recent results that model the propagation of Galactic cosmic rays through the stellar winds of a number of nearby solar-type stars. Our sample comprises of 5 well-observed solar-type stars that we have constructed well-constrained stellar wind models for. This allows us to calculate the transport of Galactic cosmic rays through these systems. I will present our results of the Galactic cosmic ray fluxes that reach (a) the habitable zone and (b) the location of known exoplanets. The systems show a variety of behaviour and I will discuss the most promising systems for upcoming JWST observations. </p>


2018 ◽  
Vol 68 (1) ◽  
pp. 377-404 ◽  
Author(s):  
Vincent Tatischeff ◽  
Stefano Gabici

In this review, we first reassess the supernova remnant paradigm for the origin of Galactic cosmic rays in the light of recent cosmic-ray data acquired by the Voyager 1 spacecraft. We then describe the theory of light-element nucleosynthesis by nuclear interaction of cosmic rays with the interstellar medium and outline the problem of explaining the measured beryllium abundances in old halo stars of low metallicity with the standard model of the Galactic cosmic-ray origin. We then discuss the various cosmic-ray models proposed in the literature to account for the measured evolution of the light elements in the Milky Way, and point out the difficulties that they all encounter. It seems to us that, among all possibilities, the superbubble model provides the most satisfactory explanation for these observations.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Alexander Mishev

The galactic cosmic rays are the main source of ionization in the troposphere of the Earth. Solar energetic particles of MeV energies cause an excess of ionization in the atmosphere, specifically over polar caps. The ionization effect during the major ground level enhancement 69 on January 20, 2005 is studied at various time scales. The estimation of ion rate is based on a recent numerical model for cosmic-ray-induced ionization. The ionization effect in the Earth atmosphere is obtained on the basis of solar proton energy spectra, reconstructed from GOES 11 measurements and subsequent full Monte Carlo simulation of cosmic-ray-induced atmospheric cascade. The evolution of atmospheric cascade is performed with CORSIKA 6.990 code using FLUKA 2011 and QGSJET II hadron interaction models. The atmospheric ion rate is explicitly obtained for various latitudes, namely, 40°N, 60°N and 80°N. The time evolution of obtained ion rates is presented. The short- and medium-term ionization effect is compared with the average effect due to galactic cosmic rays. It is demonstrated that ionization effect is significant only in subpolar and polar atmosphere during the major ground level enhancement of January 20, 2005. It is negative in troposphere at midlatitude, because of the accompanying Forbush effect.


2021 ◽  
Author(s):  
Jannis Weimar ◽  
Paul Schattan ◽  
Martin Schrön ◽  
Markus Köhli ◽  
Rebecca Gugerli ◽  
...  

<p><span>Secondary cosmic-ray neutrons may be effectively used as a proxy for environmental hydrogen content at the hectare scale. These neutrons are generated mostly in the upper layers of the atmosphere within particle showers induced by galactic cosmic rays and other secondary particles. Below 15 km altitude their intensity declines as primary cosmic rays become less abundant and the generated neutrons are attenuated by the atmospheric air. At the earth surface, the intensity of secondary cosmic-ray neutrons heavily depends on their attenuation within the atmosphere, i.e. the amount of air the neutrons and their precursors pass through. Local atmospheric pressure measurements present an effective means to account for the varying neutron attenuation potential of the atmospheric air column above the neutron sensor. Pressure variations possess the second largest impact on the above-ground epithermal neutron intensity. Thus, using epithermal neutrons to infer environmental hydrogen content requires precise knowledge on how to correct for atmospheric pressure changes.</span></p><p><span>We conducted several short-term field experiments in saturated environments and at different altitudes, i.e. different pressure states to observe the neutron intensity pressure relation over a wide range of pressure values. Moreover, we used long-term measurements above glaciers in order to monitor the local dependence of neutron intensities and pressure in a pressure range typically found in Cosmic-Ray Neutron Sensing. The results are presented along with a broad Monte Carlo simulation campaign using MCNP 6. In these simulations, primary cosmic rays are released above the earth atmosphere at different cut-off rigidities capturing the whole evolution of cosmic-ray neutrons from generation to attenuation and annihilation. The simulated and experimentally derived pressure relation of cosmic-ray neutrons is compared to those of similar studies and assessed in the light of an appropriate atmospheric pressure correction for Cosmic-Ray Neutron Sensing.</span></p>


2008 ◽  
Vol 4 (S257) ◽  
pp. 471-473
Author(s):  
M. Buchvarova ◽  
P. Velinov

AbstractOur model generalizes the differential D(E) and integral D(>E) spectra of cosmic rays (CR) during the 11-year solar cycle. The empirical model takes into account galactic (GCR) and anomalous cosmic rays (ACR) heliospheric modulation by four coefficients. The calculated integral spectra in the outer planets are on the basis of mean gradients: for GCR – 3%/AU and 7%/AU for anomalous protons. The obtained integral proton spectra are compared with experimental data, the CRÈME96 model for the Earth and theoretical results of 2D stochastic model. The proposed analytical model gives practical possibility for investigation of experimental data from measurements of galactic cosmic rays and their anomalous component.


2020 ◽  
Author(s):  
Donna Rodgers-Lee ◽  
Aline Vidotto ◽  
Andrew Taylor ◽  
Paul Rimmer ◽  
Turlough Downes

<p>Cosmic rays may have contributed to the start of life on Earth. Cosmic rays also influence and contribute to atmospheric electrical circuits, cloud cover and biological mutation rates which are important for the characterisation of exoplanetary systems. The flux of Galactic cosmic rays present at the time when life is thought to have begun on the young Earth or in other young exoplanetary systems is largely determined by the properties of the stellar wind. </p> <p>The spectrum of Galactic cosmic rays that we observe at Earth is modulated, or suppressed, by the magnetised solar wind and thus differs from the local interstellar spectrum observed by Voyager 1 and 2 outside of the solar system. Upon reaching 1au, Galactic cosmic rays subsequently interact with the Earth’s magnetosphere and some of their energy is deposited in the upper atmosphere. The properties of the solar wind, such as the magnetic field strength and velocity profile, evolve with time. Generally, young solar-type stars are very magnetically active and are therefore thought to drive stronger stellar winds. </p> <p>Here I will present our recent results which simulate the propagation of Galactic cosmic rays through the heliosphere to the location of Earth as a function of the Sun's life, from 600 Myr to 6 Gyr, in the Sun’s future. I will specifically focus on the flux of Galactic cosmic rays present at the time when life is thought to have started on Earth (~1 Gyr). I will show that the intensity of Galactic cosmic rays which reached the young Earth, by interacting with the solar wind, would have been greatly reduced in comparison to the present day intensity. I will also discuss the effect that the Sun being a slow/fast rotator would have had on the flux of cosmic rays reaching Earth at early times in the solar system's life.</p> <p>Despite the importance of Galactic cosmic rays, their chemical signature in the atmospheres’ of young Earth-like exoplanets may not be observable with instruments in the near future. On the other hand, it may instead be possible to detect their chemical signature by observing young warm Jupiters. Thus, I will also discuss the HR 2562b exoplanetary system as a candidate for observing the chemical signature of Galactic cosmic rays in a young exoplanetary atmosphere with upcoming missions such as JWST.</p>


2017 ◽  
Vol 13 (S335) ◽  
pp. 69-74
Author(s):  
A. Dal Lago ◽  
C. R. Braga ◽  
R. R. S. de Mendonca ◽  
M. Rockenbach ◽  
E. Echer ◽  
...  

AbstractThe Global Muon Detector Network (GMDN) is composed by four ground cosmic ray detectors distributed around the Earth: Nagoya (Japan), Hobart (Australia), Sao Martinho da Serra (Brazil) and Kuwait city (Kuwait). The network has operated since March 2006. It has been upgraded a few times, increasing its detection area. Each detector is sensitive to muons produced by the interactions of ~50 GeV Galactic Cosmic Rays (GCR) with the Earth′s atmosphere. At these energies, GCR are known to be affected by interplanetary disturbances in the vicinity of the earth. Of special interest are the interplanetary counterparts of coronal mass ejections (ICMEs) and their driven shocks because they are known to be the main origins of geomagnetic storms. It has been observed that these ICMEs produce changes in the cosmic ray gradient, which can be measured by GMDN observations. In terms of applications for space weather, some attempts have been made to use GMDN for forecasting ICME arrival at the earth with lead times of the order of few hours. Scientific space weather studies benefit the most from the GMDN network. As an example, studies have been able to determine ICME orientation at the earth using cosmic ray gradient. Such determinations are of crucial importance for southward interplanetary magnetic field estimates, as well as ICME rotation.


2020 ◽  
Author(s):  
Martin Airey ◽  
Giles Harrison ◽  
Karen Aplin ◽  
Christian Pfrang

<p>Galactic cosmic rays are ubiquitous in solar system atmospheres. On Venus, the altitude of peak ion production due to cosmic rays (the Pfotzer-Regener maximum) occurs at ~63 km, within the optically thick region of the upper clouds. This indicates the possibility of electrical effects on droplets within Venusian clouds. Motivated by this, our VENI (Venusian Electricity, Nephology, and Ionisation) project explores effects of galactic cosmic ray (GCR) induced ionisation on cloud droplets in circumstances with relevance to Venus’ atmosphere. Charge is known to lower the critical supersaturation required for cloud droplets to form; slightly larger droplets are stable at lower saturation ratios if sufficiently charged. Condensation of gas directly onto ions is also potentially possible on Venus if the atmosphere is sufficiently supersaturated. GCRs and the secondary charged particles they produce are therefore anticipated to affect cloud droplet behaviour on Venus.</p><p>Experiments have been conducted using electrically isolated droplets, through levitation in a standing acoustic wave. The droplets are monitored with a high-magnification CCD camera to determine their evaporation rate and charge. The charge is measured both by the deflection in an electric field and by passing the droplet through a custom-built induction ring. A relationship between the evaporation rate and charge of the droplets is found to be consistent with theory, allowing droplet lifetime to be predicted for a given charge. Further experiments using sulphuric acid droplets in a carbon dioxide environment offer more direct relevance to the Venusian environment and cosmic ray enhancement due to solar energetic particles (SEPs) in space weather events will be simulated using a corona source.</p>


Radiocarbon ◽  
1989 ◽  
Vol 31 (03) ◽  
pp. 704-718 ◽  
Author(s):  
Paul E Damon ◽  
Songlin Cheng ◽  
Timothy W Linick

The coarse structure of the 14C spectrum consists of a secular trend curve that may be closely fit by a sinusoidal curve with period ca 11,000 yr and half amplitude ±51. This long-term trend is the result of changes in the earth's geomagnetic dipole moment. Consequently, it modulates solar components of the 14C spectrum but does not appear to modulate a component of the spectrum of ca 2300-yr period. The ca 2300-yr period is of uncertain origin but may be due to changes in climate because it also appears in the δ18O spectrum of ice cores. This component strongly modulates the well-known ca 200-yr period of the spectrum's fine structure. The hyperfine structure consists of two components that fluctuate with the 11-yr solar cycle. One component results from solar-wind modulation of the galactic cosmic rays and has a half-amplitude of ca ±1.5. The other component is the result of 14C production by solar cosmic rays that arrive more randomly but rise and fall with the 11-yr cycle and appear to dominate the fluctuation of the galactic cosmic-ray-produced component by a factor of two.


2011 ◽  
Vol 10 (4) ◽  
pp. 325-334 ◽  
Author(s):  
J. Eberle ◽  
M. Cuntz ◽  
B. Quarles ◽  
Z.E. Musielak

AbstractWe investigate the possibility of habitable Trojan planets in the HD 23079 star–planet system. This system consists of a solar-type star and a Jupiter-type planet, which orbits the star near the outer edge of the stellar habitable zone in an orbit of low eccentricity. We find that in agreement with previous studies Earth-mass habitable Trojan planets are possible in this system, although the success of staying within the zone of habitability is significantly affected by the orbital parameters of the giant planet and by the initial condition of the theoretical Earth-mass planet. In one of our simulations, the Earth-mass planet is captured by the giant planet and thus becomes a habitable moon.


Sign in / Sign up

Export Citation Format

Share Document