RHAMNOGALACTURONAN II: Structure and Function of a Borate Cross-Linked Cell Wall Pectic Polysaccharide

2004 ◽  
Vol 55 (1) ◽  
pp. 109-139 ◽  
Author(s):  
Malcolm A. O'Neill ◽  
Tadashi Ishii ◽  
Peter Albersheim ◽  
Alan G. Darvill
2020 ◽  
Vol 477 (10) ◽  
pp. 1983-2006 ◽  
Author(s):  
Sarah M. Batt ◽  
David E. Minnikin ◽  
Gurdyal S. Besra

Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is the leading cause of death from an infectious disease, with a mortality rate of over a million people per year. This pathogen's remarkable resilience and infectivity is largely due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore, an understanding of the structure and function of the cell wall lipids is of huge indirect clinical significance. This review provides a synopsis of the cell envelope and the major lipids contained within, including structure, biosynthesis and roles in pathogenesis.


1994 ◽  
Vol 22 (2) ◽  
pp. 374-378 ◽  
Author(s):  
Peter Albersheim ◽  
Jinhua An ◽  
Glenn Freshour ◽  
Melvin S. Fuller ◽  
Rafael Guillen ◽  
...  

1986 ◽  
Vol 64 (4) ◽  
pp. 793-801 ◽  
Author(s):  
Michael G. Smart ◽  
James R. Aist ◽  
Herbert W. Israel

Penetration pegs of Erysiphe graminis D.C. f. sp. hordei Em. Marchal are usually not impeded by normal papillae of barley coleoptiles, whereas oversize papillae are impenetrable to appressoria of the pathogen. We investigated the chemical composition of these papillae and the cell walls by classical histochemistry, in part to extend the fragmented knowledge of these structures and in part to find out if there are differences between normal and oversize papillae which would account for their different efficacies in resisting penetration. These papillae were indistinguishable from one another histochemically and contained protein, carbohydrate other than pectin, and a phenolic which was not lignin. We report also a definitive proof of callose in papillae. They do not contain cutin or suberin. The cell wall did not contain callose or cutin–suberin but did contain protein, pectin, and a phenolic (also not lignin). The results imply that different linkages between molecules in oversize papillae, or some other differences not revealed in this study, are responsible for their ability to prevent fungal penetration.


1985 ◽  
Vol 1985 (Supplement 2) ◽  
pp. 105-127 ◽  
Author(s):  
K. ROBERTS ◽  
C. GRIEF ◽  
G. J. HILLS ◽  
P. J. SHAW

2021 ◽  
Author(s):  
Breeanna Urbanowicz ◽  
William Barnes ◽  
Sabina Koj ◽  
Ian Black ◽  
Stephanie Archer-Hartmann ◽  
...  

Abstract Background: In plants, there is a large diversity of polysaccharides that comprise the cell wall. Each major type of plant cell wall polysaccharide, including cellulose, hemicellulose, and pectin, has distinct structures and functions that contribute to wall mechanics and influence plant morphogenesis. In recent years, pectin modification and valorization has attracted much attention due to its expanding roles of pectin in biomass deconstruction, food science, material science, and environmental remediation. However, pectin utilization has been limited by our incomplete knowledge of pectin structure. Herein, we present a workflow of principles relevant for the characterization of polysaccharide primary structure using nature’s most complex polysaccharide, rhamnogalacturonan-II (RG-II), as a model.Results: We outline how to isolate RG-II from celery and duckweed cell wall material and red wine using chemical or enzymatic treatments coupled with size-exclusion chromatography. From there, we demonstrate the use of mass spectrometry (MS)-based techniques to determine the glycosyl residue and linkage compositions of the intact RG II molecule and RG-II-derived oligosaccharides including special considerations for labile monosaccharides. In doing so, we demonstrated that in the duckweed Wolffiella repanda the arabinopyranosyl (Arap) residue of side chain B is substituted at O-2 with rhamnose. As RG-II is further modified by non-glycosyl modifications including methyl-ethers, methyl-esters, and acetyl-esters, we then describe ways to use electrospray-MS to identify these moieties on RG-II-derived oligosaccharides. We then explored the utility of proton nuclear magnetic resonance spectroscopy (1H-NMR) in identifying RG-II-specific sugars and non-glycosyl modifications to complement and extend MS-based approaches. Finally, we describe how to assess the factors that affect RG-35 II dimerization using liquid chromatographic and NMR spectroscopic approaches.Conclusions: The complexity of pectic polysaccharide structures has hampered efforts aimed at their valorization. In this work, we used RG-II as a model to demonstrate the steps necessary to isolate and characterize polysaccharides using chromatographic, MS, and NMR techniques. The principles can be applied to the characterization of other saccharide structures and will help inform researchers on how saccharide structure relates to functional properties in the future.


Sign in / Sign up

Export Citation Format

Share Document