Intense Sources of Fast Neutrons

1978 ◽  
Vol 28 (1) ◽  
pp. 207-237 ◽  
Author(s):  
H H Barschall
Keyword(s):  
Author(s):  
Timur Smetani ◽  
Elizaveta Gureva ◽  
Vyacheslav Andreev ◽  
Natalya Tarasova ◽  
Nikolai Andree

The article discusses methods for optimizing the design of the Neutron Converter research plant design with parameters that are most suitable for a particular consumer. 38 similar plant structures with different materials and sources were calculated, on the basis of which the most optimal options were found. As part of the interaction between OKBM Afrikantov JSC and the Nizhny Novgorod State Technical University named after R. E. Alekseev, the Neutron Converter research plant was designed and assembled. The universal neutron converter is a device for converting a stream of fast neutrons emitted by isotopic sources into a "standardized" value of flux density with known parameters in the volume of the central part of the product, which is the working part of the universal neutron converter. To supply neutron converters to other customer organizations (universities, research organizations and collective centers), it is necessary to take into account the experience of operating an existing facility, as well as rationalize the design process of each specific instance in accordance with the requirements of the customer.


Engevista ◽  
2017 ◽  
Vol 19 (5) ◽  
pp. 1496
Author(s):  
Relly Victoria Virgil Petrescu ◽  
Raffaella Aversa ◽  
Antonio Apicella ◽  
Florian Ion Petrescu

Despite research carried out around the world since the 1950s, no industrial application of fusion to energy production has yet succeeded, apart from nuclear weapons with the H-bomb, since this application does not aims at containing and controlling the reaction produced. There are, however, some other less mediated uses, such as neutron generators. The fusion of light nuclei releases enormous amounts of energy from the attraction between the nucleons due to the strong interaction (nuclear binding energy). Fusion it is with nuclear fission one of the two main types of nuclear reactions applied. The mass of the new atom obtained by the fusion is less than the sum of the masses of the two light atoms. In the process of fusion, part of the mass is transformed into energy in its simplest form: heat. This loss is explained by the Einstein known formula E=mc2. Unlike nuclear fission, the fusion products themselves (mainly helium 4) are not radioactive, but when the reaction is used to emit fast neutrons, they can transform the nuclei that capture them into isotopes that some of them can be radioactive. In order to be able to start and to be maintained with the success the nuclear fusion reactions, it is first necessary to know all this reactions very well. This means that it is necessary to know both the main reactions that may take place in a nuclear reactor and their sense and effects. The main aim is to choose and coupling the most convenient reactions, forcing by technical means for their production in the reactor. Taking into account that there are a multitude of possible variants, it is necessary to consider in advance the solutions that we consider them optimal. The paper takes into account both variants of nuclear fusion, and cold and hot. For each variant will be mentioned the minimum necessary specifications.


1980 ◽  
Vol 45 (3) ◽  
pp. 783-790 ◽  
Author(s):  
Petr Taras ◽  
Milan Pospíšil

Catalytic activity of nickel-molybdenum catalysts for methanation of carbon monoxide and hydrogen was studied by means of differential scanning calorimetry. The activity of NiMoOx systems exceeds that of carrier-free nickel if x < 2, and is conditioned by the oxidation degree of molybdenum, changing in dependence on the composition in the region Mo-MoO2. The activity of the catalysts is adversely affected by irradiation by fast neutrons, dose 28.1 Gy, or by γ rays using doses in the region 0.8-52 kGy. The system is most susceptible to irradiation in the region of low concentrations of the minor component (about 1 mol.%). The dependence of changes in catalytic activity of γ-irradiated samples on the dose exhibits a maximum in the range of 2-5 kGy. The changes in catalytic activity are stimulated by the change of reactivity of the starting mixed oxides, leading to different kinetics of their reduction and modification of their adsorption properties. The irradiation of the catalysts results in lowered concentration of the active centres for the methanation reaction.


1940 ◽  
Vol 74 (752) ◽  
pp. 283-285
Author(s):  
Roy Milton Chatters
Keyword(s):  

1954 ◽  
Vol 88 (841) ◽  
pp. 287-293 ◽  
Author(s):  
Wilson S. Stone ◽  
Mary L. Alexander ◽  
Frances E. Clayton ◽  
Edna Dudgeon

Sign in / Sign up

Export Citation Format

Share Document