The Effect of X-Ray Spectra from Molybdenum and Tungsten Target Tubes on Image Quality in Mammography

Radiology ◽  
1976 ◽  
Vol 118 (3) ◽  
pp. 705-709 ◽  
Author(s):  
Arthur G. Haus ◽  
Charles E. Metz ◽  
John T. Chiles ◽  
Kurt Rossmann
2020 ◽  
Vol 64 (2) ◽  
pp. 20503-1-20503-5
Author(s):  
Faiz Wali ◽  
Shenghao Wang ◽  
Ji Li ◽  
Jianheng Huang ◽  
Yaohu Lei ◽  
...  

Abstract Grating-based x-ray phase-contrast imaging has the potential to enhance image quality and provide inner structure details non-destructively. In this work, using grating-based x-ray phase-contrast imaging system and employing integrating-bucket method, the quantitative expressions of signal-to-noise ratios due to photon statistics and mechanical error are analyzed in detail. Photon statistical noise and mechanical error are the main sources affecting the image noise in x-ray grating interferometry. Integrating-bucket method is a new phase extraction method translated to x-ray grating interferometry; hence, its image quality analysis would be of great importance to get high-quality phase image. The authors’ conclusions provide an alternate method to get high-quality refraction signal using grating interferometer, and hence increases applicability of grating interferometry in preclinical and clinical usage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas P. Sauter ◽  
Jana Andrejewski ◽  
Manuela Frank ◽  
Konstantin Willer ◽  
Julia Herzen ◽  
...  

AbstractGrating-based X-ray dark-field imaging is a novel imaging modality with enormous technical progress during the last years. It enables the detection of microstructure impairment as in the healthy lung a strong dark-field signal is present due to the high number of air-tissue interfaces. Using the experience from setups for animal imaging, first studies with a human cadaver could be performed recently. Subsequently, the first dark-field scanner for in-vivo chest imaging of humans was developed. In the current study, the optimal tube voltage for dark-field radiography of the thorax in this setup was examined using an anthropomorphic chest phantom. Tube voltages of 50–125 kVp were used while maintaining a constant dose-area-product. The resulting dark-field and attenuation radiographs were evaluated in a reader study as well as objectively in terms of contrast-to-noise ratio and signal strength. We found that the optimum tube voltage for dark-field imaging is 70 kVp as here the most favorable combination of image quality, signal strength, and sharpness is present. At this voltage, a high image quality was perceived in the reader study also for attenuation radiographs, which should be sufficient for routine imaging. The results of this study are fundamental for upcoming patient studies with living humans.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1721
Author(s):  
Heon Yong Jeong ◽  
Hyung San Lim ◽  
Ju Hyuk Lee ◽  
Jun Heo ◽  
Hyun Nam Kim ◽  
...  

The effect of scintillator particle size on high-resolution X-ray imaging was studied using zinc tungstate (ZnWO4) particles. The ZnWO4 particles were fabricated through a solid-state reaction between zinc oxide and tungsten oxide at various temperatures, producing particles with average sizes of 176.4 nm, 626.7 nm, and 2.127 μm; the zinc oxide and tungsten oxide were created using anodization. The spatial resolutions of high-resolution X-ray images, obtained from utilizing the fabricated particles, were determined: particles with the average size of 176.4 nm produced the highest spatial resolution. The results demonstrate that high spatial resolution can be obtained from ZnWO4 nanoparticle scintillators that minimize optical diffusion by having a particle size that is smaller than the emission wavelength.


Polyhedron ◽  
1989 ◽  
Vol 8 (24) ◽  
pp. 2947-2949 ◽  
Author(s):  
Andreas A. Danopoulos ◽  
Geoffrey Wilkinson ◽  
Michael B. Hursthouse ◽  
Bilquis Hussain

2002 ◽  
Vol 654 (1-2) ◽  
pp. 109-116 ◽  
Author(s):  
Matthias Bastian ◽  
Dolores Morales ◽  
Rinaldo Poli ◽  
Philippe Richard ◽  
Helmut Sitzmann

2010 ◽  
Vol 51 (3) ◽  
pp. 260-270 ◽  
Author(s):  
Peter Björkdahl ◽  
Ulf Nyman

Background: Concern has been raised regarding the mounting collective radiation doses from computed tomography (CT), increasing the risk of radiation-induced cancers in exposed populations. Purpose: To compare radiation dose and image quality in a chest phantom and in patients for the diagnosis of pulmonary embolism (PE) at 100 and 120 peak kilovoltage (kVp) using 16-multichannel detector computed tomography (MDCT). Material and Methods: A 20-ml syringe containing 12 mg I/ml was scanned in a chest phantom at 100/120 kVp and 25 milliampere seconds (mAs). Consecutive patients underwent 100 kVp ( n = 50) and 120 kVp ( n = 50) 16-MDCT using a “quality reference” effective mAs of 100, 300 mg I/kg, and a 12-s injection duration. Attenuation (CT number), image noise (1 standard deviation), and contrast-to-noise ratio (CNR; fresh clot = 70 HU) of the contrast medium syringe and pulmonary arteries were evaluated on 3-mm-thick slices. Subjective image quality was assessed. Computed tomography dose index (CTDIvol) and dose–length product (DLP) were presented by the CT software, and effective dose was estimated. Results: Mean values in the chest phantom and patients changed as follows when X-ray tube potential decreased from 120 to 100 kVp: attenuation +23% and +40%, noise +38% and +48%, CNR −6% and 0%, and CTDIvol −38% and −40%, respectively. Mean DLP and effective dose in the patients decreased by 42% and 45%, respectively. Subjective image quality was excellent or adequate in 49/48 patients at 100/120 kVp. No patient with a negative CT had any thromboembolism diagnosed during 3-month follow-up. Conclusion: By reducing X-ray tube potential from 120 to 100 kVp, while keeping all other scanning parameters unchanged, the radiation dose to the patient may be almost halved without deterioration of diagnostic quality, which may be of particular benefit in young individuals.


Sign in / Sign up

Export Citation Format

Share Document