scholarly journals Three-dimensional US in Infants with Developmental Dysplasia of the Hip: Ready for Prime Time

Radiology ◽  
2018 ◽  
Vol 287 (3) ◽  
pp. 1016-1017
Author(s):  
Diego Jaramillo
2020 ◽  
Author(s):  
Heng Zhang ◽  
Yang Liu ◽  
Kuanxin Li ◽  
Zheng Zhang ◽  
Jianzhong Guan ◽  
...  

Abstract Background: It is technically challenging to restore hip rotation center exactly in total hip arthroplasty (THA) for patients with end-stage osteoarthritis secondary to developmental dysplasia of the hip (DDH) due to the complicated acetabular morphology changes.In this study, we developed a new method to restore hip rotation center exactly and rapidly in THA with the assistance of three dimensional (3-D) printing technology.Methods: Seventeen patients (21 hips) with end-stage osteoarthritis secondary to DDH who underwent THA were included in this study. Simulated operations were performed on 3-D printed hip models for preoperative planning. The Harris fossa and acetabular notches were recognized and restored to locate acetabular center. The agreement in the size of acetabular cup and bone defect between simulated operations and actual operations were analyzed.Clinical and radiographic outcomes were recorded and evaluated.Results: The sizes of the acetabular cup of simulated operations on 3-D printing models showed a high rate of coincidence with the actual sizes in the operations(ICC value=0.930) There was no significant difference statistically between the sizes of bone defect in simulated operations and the actual sizes of bone defect in THA( t value=0.03,P value=0.97). The average Harris score of the patients was improved from (38.33±6.07) preoperatively to the last follow-up (88.61±3.44) postoperatively.The mean vertical and horizontal distances of hip rotation center on the pelvic radiographs were restored to (15.12 ± 1.25)mm and ( 32.49±2.83) mm respectively. No case presented dislocation or radiological signs of loosening until last follow-up.Conclusions: The application of 3-D printing technology faciliate orthopedists to recognize the morphology of Harris fossa and acetabular notches , locate the acetabular center and restore the hip rotation center rapidly and acurately.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuhui Yang ◽  
Weihong Liao ◽  
Weiqun Yi ◽  
Hai Jiang ◽  
Guangtao Fu ◽  
...  

Abstract Background When performing femoral reconstruction in patients with Crowe type IV developmental dysplasia of the hip (DDH), anatomical deformity presents many technical challenges to orthopedic surgeons. The false acetabulum is suggested to influence load transmission and femoral development. The aim of this study was to describe the morphological features of dysplastic femurs in Crowe type IV DDH and further evaluate the potential effect of the false acetabulum on morphological features and medullary canal of Crowe type IV femurs. Methods We analyzed preoperative computed tomography scans from 45 patients with 51 hips (25 hips without false acetabulum in the IVa group and 26 hips with false acetabulum in the IVb group) who were diagnosed with Crowe type IV DDH and 30 normal hips in our hospital between January 2009 and January 2019. Three-dimensional reconstruction was performed using Mimics software, and the coronal femoral plane was determined to evaluate the following parameters: dislocation height, dislocation ratio, height of the femoral head (FH), height of the greater trochanter (GT), GT–FH height discrepancy, height of the isthmus, neck-shaft angle, femoral offset and anteversion of the femoral neck. The mediolateral (ML) width, anterolateral (AP) width and diameter of medullary canal of the proximal femur were measured on the axial sections. Further, canal flare index (CFI), metaphyseal-CFI and diaphyseal-CFI were also calculated. Results Compared with the normal femurs, the Crowe type IV DDH femurs had a higher femoral head, larger GT–FH height discrepancy, larger femoral neck anteversion, higher isthmus position and smaller femoral offset. Dislocation height and dislocation rate were significantly larger in the IVa DDH group (65.34 ± 9.83 mm vs. 52.24 ± 11.42 mm). Further, the IVb femurs had a significantly lower isthmus position, larger neck-shaft angle and smaller femoral neck anteversion than IVa femurs. The ML, AP canal widths and the diameter of medullary canal in both DDH groups were significantly smaller than the normal group. Dimensional parameters of IVa femurs were also narrower than IVb femurs in most sections, but with no difference at the level of isthmus. According to the CFIs, the variation of proximal medullary canal in IVb femurs was mainly located in the diaphyseal region, while that in IVa femurs was located in the whole proximal femur. Conclusions High dislocated femurs are associated with more anteverted femoral neck, smaller femoral offset and narrower medullary canal. Without stimulation of the false acetabulum, IVa DDH femurs were associated with higher dislocation and notably narrower medullary canal, whose variation of medullary canal was located in the whole proximal femur.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Rongshan Cheng ◽  
Henghui Zhang ◽  
Willem Alexander Kernkamp ◽  
Jingmao Zheng ◽  
Kerong Dai ◽  
...  

Abstract Background The purpose of this study was to investigate the relationship between the three dimensional (3D) femoral head displacement in patients with developmental dysplasia of the hip (DDH) and Crowe classification. Methods Retrospectively, CT scans of 60 DDH patients and 55 healthy demography-matched healthy control subjects were analyzed. Using the anterior pelvic plane a pelvic anatomic coordinate system was established. The center coordinates of the femoral heads of both the DDH patients and control subjects were quantified relative to the pelvic coordinate system and were mapped proportionally to a representative normal pelvis for comparison. Results In the anteroposterior (AP) direction, the center of the femoral head was significantly more anterior in the DDH patients (type I, II, and III, respectively45.0 ± 5.5, 42.9 ± 7.1, and 43.9 ± 4.6 mm) when compared to the controls (50.0 ± 5.2 mm) (p < 0.001 for all). In the medial-lateral (ML) direction, the center of the femoral head was significantly more lateral in the DDH patients (type I, II, and III =103.5 ± 8.6, 101.5 ± 6.6, 102.1 ± 11.2 mm) when compared to the controls (87.5 ± 5.1 mm) (p < 0.001 for all). In the superior-inferior (SI) direction, the center of the femoral head was significantly more proximal in the DDH patients (type I, II, and III =62.4 ± 7.3, 50.0 ± 6.3, and 43.2 ± 6.6 mm) when compared to the controls (66.0 ± 6.2 mm) (p < 0.001 for all). Conclusions The severity of DDH using the Crowe classification was related to the degree of the femoral head displacement in the SI direction, but not in the ML or AP directions. By assessing the 3D femoral head displacement in DDH patients, individualized component positioning might benefit surgical outcome.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Rongshan Cheng ◽  
Muyin Huang ◽  
Willem Alexander Kernkamp ◽  
Huiwu Li ◽  
Zhenan Zhu ◽  
...  

Abstract Background The purpose of this study was to investigate the association between the severity of Developmental dysplasia of the hip (DDH) and the abnormality in pelvic incidence (PI). Methods This was a retrospective study analyzing 53 DDH patients and 53 non-DDH age-matched controls. Computed tomography images were used to construct three-dimensional pelvic model. The Crowe classification was used to classify the severity of DDH. The midpoint of the femoral head centers and sacral endplates were projected to the sagittal plane of the pelvis. The PI was defined as the angle between a line perpendicular to the sacral plate at its midpoint and a line connecting this point to the axis of the femoral heads. Independent sample t-tests were used to compare the differences between the PI of DDH group and the non-DDH controls group. Kendall’s coefficient of concordance was used to determine the correlation between the severity of DDH and PI. Results Patients with DDH had a significantly (p = 0.041) higher PI than the non-DDH controls (DDH 47.6 ± 8.2°, normal 44.2 ± 8.8°). Crowe type I patients had a significantly (p = 0.038) higher PI (48.2 ± 7.6°) than the non-DDH controls. No significant difference between the PI in Crowe type II or III patients and the PI in non-DDH controls were found (Crowe type II, 50.2 ± 9.6°, p = 0.073; Crowe type III, 43.8 ± 7.2°, p = 0.930). No correlation was found between the severity of DDH and the PI (r = 0.091, p = 0.222). Conclusions No correlation was found between the severity of DDH and the PI. The study confirmed that the PI in DDH (Crowe type I) group was higher than that of the non-DDH control group, while the PI does not correlate with the severity of DDH.


Sign in / Sign up

Export Citation Format

Share Document