High-Spatial-Resolution Three-dimensional Imaging of Human Spinal Cord and Column Anatomy with Postmortem X-ray Phase-Contrast Micro-CT

Radiology ◽  
2021 ◽  
Vol 298 (1) ◽  
pp. 135-146
Author(s):  
Giacomo E. Barbone ◽  
Alberto Bravin ◽  
Alberto Mittone ◽  
Sergio Grosu ◽  
Jens Ricke ◽  
...  
2013 ◽  
Vol 253 (1) ◽  
pp. 24-30 ◽  
Author(s):  
A. TAPFER ◽  
M. BECH ◽  
I. ZANETTE ◽  
P. SYMVOULIDIS ◽  
S. STANGL ◽  
...  

1999 ◽  
Vol 76 (1) ◽  
pp. 98-102 ◽  
Author(s):  
F. Beckmann ◽  
K. Heise ◽  
B. Kölsch ◽  
U. Bonse ◽  
M.F. Rajewsky ◽  
...  

2015 ◽  
Vol 22 (1) ◽  
pp. 136-142 ◽  
Author(s):  
Kenta Takashima ◽  
Masato Hoshino ◽  
Kentaro Uesugi ◽  
Naoto Yagi ◽  
Shojiro Matsuda ◽  
...  

Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies.


2020 ◽  
Vol 115 ◽  
pp. 111045 ◽  
Author(s):  
Cristine Santos de Oliveira ◽  
Adriana Trompetero González ◽  
Tobias Hedtke ◽  
Tobias Kürbitz ◽  
Andreas Heilmann ◽  
...  

2016 ◽  
Vol 23 (3) ◽  
pp. 813-819 ◽  
Author(s):  
Alberto Astolfo ◽  
Aurélien Lathuilière ◽  
Vanessa Laversenne ◽  
Bernard Schneider ◽  
Marco Stampanoni

Amyloid beta accumulation into insoluble plaques (Aβp) is known to play a significant role in the pathological process in Alzheimer's disease (AD). The presence of Aβp is also one of the neuropathological hallmarks for the disease. AD final diagnosis is generally acknowledged after the evaluation of Aβp deposition in the brain. Insoluble Aβp accumulation may also concur to cause AD as postulated in the so-calledamyloid hypothesis. Therefore, the visualization, evaluation and quantification of Aβp are nowadays the keys for a better understanding of the disease, which may point to a possible cure for AD in the near future. Synchrotron-based X-ray phase contrast (XPC) has been demonstrated as the only imaging method that can retrieve the Aβp signal with high spatial resolution (up to 10 µm), high sensitivity and three-dimensional information at the same time. Although at the moment XPC is suitable forex vivosamples only, it may develop into an alternative to positron emission tomography and magnetic resonance imaging in Aβp imaging. In this contribution the possibility of using synchrotron-based X-ray phase propagation computed tomography to visualize and measure Aβp on mouse brains is presented. A careful setup optimization for this application leads to a significant improvement of spatial resolution (∼1 µm), data acquisition speed (five times faster), X-ray dose (five times lower) and setup complexity, without a substantial loss in sensitivity when compared with the classic implementation of grating-based X-ray interferometry.


1999 ◽  
Vol 590 ◽  
Author(s):  
F. Beckmann ◽  
U. Bonse

ABSTRACTAttenuation- and phase-contrast microtomography using synchrotron radiation is applied to different samples demonstrating the advantages and limits of the two different contrast mechanism. Photon energies in the range of 8-25 keV and 60-100 keV are used. Scanning techniques employing a 2-dim. x-ray detector allow for investigation of larger specimens at high spatial resolution.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
William Vågberg ◽  
Daniel H. Larsson ◽  
Mei Li ◽  
Anders Arner ◽  
Hans M. Hertz

2010 ◽  
Vol 7 (53) ◽  
pp. 1665-1676 ◽  
Author(s):  
Georg Schulz ◽  
Timm Weitkamp ◽  
Irene Zanette ◽  
Franz Pfeiffer ◽  
Felix Beckmann ◽  
...  

Human brain tissue belongs to the most impressive and delicate three-dimensional structures in nature. Its outstanding functional importance in the organism implies a strong need for brain imaging modalities. Although magnetic resonance imaging provides deep insights, its spatial resolution is insufficient to study the structure on the level of individual cells. Therefore, our knowledge of brain microstructure currently relies on two-dimensional techniques, optical and electron microscopy, which generally require severe preparation procedures including sectioning and staining. X-ray absorption microtomography yields the necessary spatial resolution, but since the composition of the different types of brain tissue is similar, the images show only marginal contrast. An alternative to absorption could be X-ray phase contrast, which is known for much better discrimination of soft tissues but requires more intricate machinery. In the present communication, we report an evaluation of the recently developed X-ray grating interferometry technique, applied to obtain phase-contrast as well as absorption-contrast synchrotron radiation-based microtomography of human cerebellum. The results are quantitatively compared with synchrotron radiation-based microtomography in optimized absorption-contrast mode. It is demonstrated that grating interferometry allows identifying besides the blood vessels, the stratum moleculare, the stratum granulosum and the white matter. Along the periphery of the stratum granulosum, we have detected microstructures about 40 µm in diameter, which we associate with the Purkinje cells because of their location, size, shape and density. The detection of individual Purkinje cells without the application of any stain or contrast agent is unique in the field of computed tomography and sets new standards in non-destructive three-dimensional imaging.


Sign in / Sign up

Export Citation Format

Share Document