scholarly journals Amyloid-β plaque deposition measured using propagation-based X-ray phase contrast CT imaging

2016 ◽  
Vol 23 (3) ◽  
pp. 813-819 ◽  
Author(s):  
Alberto Astolfo ◽  
Aurélien Lathuilière ◽  
Vanessa Laversenne ◽  
Bernard Schneider ◽  
Marco Stampanoni

Amyloid beta accumulation into insoluble plaques (Aβp) is known to play a significant role in the pathological process in Alzheimer's disease (AD). The presence of Aβp is also one of the neuropathological hallmarks for the disease. AD final diagnosis is generally acknowledged after the evaluation of Aβp deposition in the brain. Insoluble Aβp accumulation may also concur to cause AD as postulated in the so-calledamyloid hypothesis. Therefore, the visualization, evaluation and quantification of Aβp are nowadays the keys for a better understanding of the disease, which may point to a possible cure for AD in the near future. Synchrotron-based X-ray phase contrast (XPC) has been demonstrated as the only imaging method that can retrieve the Aβp signal with high spatial resolution (up to 10 µm), high sensitivity and three-dimensional information at the same time. Although at the moment XPC is suitable forex vivosamples only, it may develop into an alternative to positron emission tomography and magnetic resonance imaging in Aβp imaging. In this contribution the possibility of using synchrotron-based X-ray phase propagation computed tomography to visualize and measure Aβp on mouse brains is presented. A careful setup optimization for this application leads to a significant improvement of spatial resolution (∼1 µm), data acquisition speed (five times faster), X-ray dose (five times lower) and setup complexity, without a substantial loss in sensitivity when compared with the classic implementation of grating-based X-ray interferometry.

2015 ◽  
Vol 22 (6) ◽  
pp. 1509-1523 ◽  
Author(s):  
Yakov I. Nesterets ◽  
Timur E. Gureyev ◽  
Sheridan C. Mayo ◽  
Andrew W. Stevenson ◽  
Darren Thompson ◽  
...  

Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.


2006 ◽  
Vol 21 (2) ◽  
pp. 125-131 ◽  
Author(s):  
J. H. Dunsmuir ◽  
S. Bennett ◽  
L. Fareria ◽  
A. Mingino ◽  
M. Sansone

For research facilities with access to synchrotron X-ray sources, X-ray absorption microtomography (XMT) has evolved from an experimental imaging method to a specialized, if not yet routine, microscopy for imaging the three-dimensional (3D) distribution of linear attenuation coefficients and, in some cases, elemental concentration with micron spatial resolution. Recent advances in source and detector design have produced conventional X-ray source instruments with comparable spatial resolution but with lower throughput and without element specific imaging. Both classes of instrument produce 3D images for analysis. We discuss an integrated approach for the implementation of analytical XMT to support basic research into the structure-property relationships of a variety of materials. The essential components include instrumentation for collecting quantitative 3D images, a 3D image processing environment to address questions as to the quantity, composition, geometry, and relationships among the features in one or more images, and visualization to provide insight and communicate results. We give examples of image analysis of resolved and unresolved pore spaces of sandstones.


2020 ◽  
Author(s):  
Qiang Tao ◽  
Chen-Chen Gao ◽  
Xue-Hong Tong ◽  
Shizhen Yuan ◽  
Tian-tian Wang ◽  
...  

Abstract Objectives This article shows an imaging method of the stomach that does not use imaging agents. X-ray phase-contrast images of different stages of gastric development were taken using X-ray in-line phase-contrast imaging (XILPCI). The aim of the study was to demonstrate that XILPCI is a micron imaging method for gastric structures. Methods The stomachs of 4-, 6- and 12-week-old rats were removed and cleaned. XILPCI has 1000 times greater soft tissue contrast than that of X-ray traditional absorption radiography. The projection images of the rats’ stomachs were recorded by an XILPCI charge coupled device (CCD) at 9 μm image resolution. Results The X-ray in-line phase-contrast images of the different stages of rat gastric specimens clearly showed the gastric architectures and the details of the gastroduodenal region. 3-dimensional stomach anatomical structure images were reconstruction. Conclusion The reconstructed gastric 3D images can clearly display the internal structure of the stomach. XILPCI may be a useful method for medical research in the future. Keywords: Synchrotron radiation phase-contrast imaging, 3-dimensional gastric structure images


2018 ◽  
Vol 25 (4) ◽  
pp. 1222-1228 ◽  
Author(s):  
Zhao Wu ◽  
Kun Gao ◽  
Zhili Wang ◽  
Chenxi Wei ◽  
Faiz Wali ◽  
...  

Grating-based X-ray differential phase-contrast imaging has attracted a great amount of attention and has been considered as a potential imaging method in clinical medicine because of its compatibility with the traditional X-ray tube source and the possibility of a large field of view. Moreover, phase-contrast computed tomography provides three-dimensional phase-contrast visualization. Generally, two-dimensional information retrieval performed on every projection is required prior to three-dimensional reconstruction in phase-contrast computed tomography. In this paper, a three-dimensional information retrieval method to separate absorption and phase information directly from two reconstructed images is derived. Theoretical derivations together with numerical simulations have been performed to confirm the feasibility and veracity of the proposed method. The advantages and limitations compared with the reverse projection method are also discussed. Owing to the reduced data size and the absence of a logarithm operation, the computational time for information retrieval is shortened by the proposed method. In addition, the hybrid three-dimensional images of absorption and phase information were reconstructed using an absorption reconstruction algorithm, hence the existing data pre-processing methods and iterative reconstruction algorithms in absorption reconstruction may be utilized in phase reconstruction immediately.


2020 ◽  
Author(s):  
Qiang Tao ◽  
Chen-Chen Gao ◽  
Xue-Hong Tong ◽  
Shi-Zhen Yuan ◽  
Jingdong Xu

Abstract Background: The structural changes of gastric mucosa are considered as an important window of early gastric lesions. This article shows an imaging method of the stomach that does not use imaging agents. X-ray phase-contrast images of different stages of gastric development were taken using micrometer level X-ray in-line phase-contrast imaging (XILPCI) technique on synchrotron radiation facility. The aim of the study was to demonstrate that the imaging technique is an appropriate method for micron imaging of the gastric structures.Methods: The stomachs of 4-, 6- and 12-week-old rats were removed and cleaned. XILPCI has 1000 times greater soft tissue contrast than that of X-ray traditional absorption radiography. The projection images of the rats stomachs were recorded by an XILPCI charge coupled device (CCD) at 9 μm image resolution.Results: The X-ray in-line phase-contrast images of the different stages of rats’ gastric specimens clearly showed the gastric architectures and the details of the gastro-duodenal region. 3-dimensional stomach anatomical structure images were reconstruction. Conclusion: The reconstructed gastric 3D images can clearly display the internal structure of the stomach. XILPCI may be a useful method for medical research in the future.


2010 ◽  
Vol 7 (53) ◽  
pp. 1665-1676 ◽  
Author(s):  
Georg Schulz ◽  
Timm Weitkamp ◽  
Irene Zanette ◽  
Franz Pfeiffer ◽  
Felix Beckmann ◽  
...  

Human brain tissue belongs to the most impressive and delicate three-dimensional structures in nature. Its outstanding functional importance in the organism implies a strong need for brain imaging modalities. Although magnetic resonance imaging provides deep insights, its spatial resolution is insufficient to study the structure on the level of individual cells. Therefore, our knowledge of brain microstructure currently relies on two-dimensional techniques, optical and electron microscopy, which generally require severe preparation procedures including sectioning and staining. X-ray absorption microtomography yields the necessary spatial resolution, but since the composition of the different types of brain tissue is similar, the images show only marginal contrast. An alternative to absorption could be X-ray phase contrast, which is known for much better discrimination of soft tissues but requires more intricate machinery. In the present communication, we report an evaluation of the recently developed X-ray grating interferometry technique, applied to obtain phase-contrast as well as absorption-contrast synchrotron radiation-based microtomography of human cerebellum. The results are quantitatively compared with synchrotron radiation-based microtomography in optimized absorption-contrast mode. It is demonstrated that grating interferometry allows identifying besides the blood vessels, the stratum moleculare, the stratum granulosum and the white matter. Along the periphery of the stratum granulosum, we have detected microstructures about 40 µm in diameter, which we associate with the Purkinje cells because of their location, size, shape and density. The detection of individual Purkinje cells without the application of any stain or contrast agent is unique in the field of computed tomography and sets new standards in non-destructive three-dimensional imaging.


Radiology ◽  
2021 ◽  
Vol 298 (1) ◽  
pp. 135-146
Author(s):  
Giacomo E. Barbone ◽  
Alberto Bravin ◽  
Alberto Mittone ◽  
Sergio Grosu ◽  
Jens Ricke ◽  
...  

2020 ◽  
Author(s):  
Qiang Tao ◽  
Chen-Chen Gao ◽  
Xue-Hong Tong ◽  
Shi-Zhen Yuan ◽  
Jingdong Xu

Abstract Background: The structural changes of gastric mucosa are considered as an important window of early gastric lesions. This article shows an imaging method of the stomach that does not use imaging agents. X-ray phase-contrast images of different stages of gastric development were taken using micrometer level X-ray in-line phase-contrast imaging (XILPCI) technique on synchrotron radiation facility. The aim of the study was to demonstrate that the imaging technique is an appropriate method for micron imaging of the gastric structures.Methods: The stomachs of 4-, 6- and 12-week-old rats were removed and cleaned. XILPCI has 1000 times greater soft tissue contrast than that of X-ray traditional absorption radiography. The projection images of the rats stomachs were recorded by an XILPCI charge coupled device (CCD) at 9 μm image resolution.Results: The X-ray in-line phase-contrast images of the different stages of rats’ gastric specimens clearly showed the gastric architectures and the details of the gastro-duodenal region. 3-dimensional stomach anatomical structure images were reconstruction.Conclusion: The reconstructed gastric 3D images can clearly display the internal structure of the stomach. XILPCI may be a useful method for medical research in the future.


2020 ◽  
Author(s):  
Qiang Tao ◽  
Chen-Chen Gao ◽  
Xue-Hong Tong ◽  
Shi-Zhen Yuan ◽  
Jingdong Xu

Abstract Background: The structural changes of gastric mucosa are considered as an important window of early gastric lesions. This article shows an imaging method of the stomach that does not use imaging agents. X-ray phase-contrast images of different stages of gastric development were taken using micrometer level X-ray in-line phase-contrast imaging (XILPCI) technique on synchrotron radiation facility. The aim of the study was to demonstrate that the imaging technique is an appropriate method for micron imaging of the gastric structures.Methods: The stomachs of 4-, 6- and 12-week-old rats were removed and cleaned. XILPCI has 1000 times greater soft tissue contrast than that of X-ray traditional absorption radiography. The projection images of the rats’ stomachs were recorded by an XILPCI charge coupled device (CCD) at 9 μm image resolution.Results: The X-ray in-line phase-contrast images of the different stages of rat gastric specimens clearly showed the gastric architectures and the details of the gastro-duodenal region. 3-dimensional stomach anatomical structure images were reconstruction. Conclusion: The reconstructed gastric 3D images can clearly display the internal structure of the stomach. XILPCI may be a useful method for medical research in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivo Planinc ◽  
Patricia Garcia-Canadilla ◽  
Hector Dejea ◽  
Ivana Ilic ◽  
Eduard Guasch ◽  
...  

AbstractCardiovascular research is in an ongoing quest for a superior imaging method to integrate gross-anatomical information with microanatomy, combined with quantifiable parameters of cardiac structure. In recent years, synchrotron radiation-based X-ray Phase Contrast Imaging (X-PCI) has been extensively used to characterize soft tissue in detail. The objective was to use X-PCI to comprehensively quantify ischemic remodeling of different myocardial structures, from cell to organ level, in a rat model of myocardial infarction. Myocardial infarction-induced remodeling was recreated in a well-established rodent model. Ex vivo rodent hearts were imaged by propagation based X-PCI using two configurations resulting in 5.8 µm and 0.65 µm effective pixel size images. The acquired datasets were used for a comprehensive assessment of macrostructural changes including the whole heart and vascular tree morphology, and quantification of left ventricular myocardial thickness, mass, volume, and organization. On the meso-scale, tissue characteristics were explored and compared with histopathological methods, while microstructural changes were quantified by segmentation of cardiomyocytes and calculation of cross-sectional areas. Propagation based X-PCI provides detailed visualization and quantification of morphological changes on whole organ, tissue, vascular as well as individual cellular level of the ex vivo heart, with a single, non-destructive 3D imaging modality.


Sign in / Sign up

Export Citation Format

Share Document