Automated Liver Segmentation for Quantitative MRI Analysis

Radiology ◽  
2021 ◽  
Author(s):  
Guilherme Moura Cunha ◽  
Kathryn J. Fowler
2018 ◽  
Vol 15 (8) ◽  
pp. 751-763 ◽  
Author(s):  
Antonio Martinez-Torteya ◽  
Hugo Gomez-Rueda ◽  
Victor Trevino ◽  
Joshua Farber ◽  
Jose Tamez-Pena ◽  
...  

Background: Diagnosing Alzheimer’s disease (AD) in its earliest stages is important for therapeutic and support planning. Similarly, being able to predict who will convert from mild cognitive impairment (MCI) to AD would have clinical implications. Objectives: The goals of this study were to identify features from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database associated with the conversion from MCI to AD, and to characterize the temporal evolution of that conversion. Methods: We screened the publically available ADNI longitudinal database for subjects with MCI who have developed AD (cases: n=305), and subjects with MCI who have remained stable (controls: n=250). Analyses included 1,827 features from laboratory assays (n=12), quantitative MRI scans (n=1,423), PET studies (n=136), medical histories (n=72), and neuropsychological tests (n=184). Statistical longitudinal models identified features with significant differences in longitudinal behavior between cases and matched controls. A multiple-comparison adjusted log-rank test identified the capacity of the significant predictive features to predict early conversion. Results: 411 features (22.5%) were found to be statistically different between cases and controls at the time of AD diagnosis; 385 features were statistically different at least 6 months prior to diagnosis, and 28 features distinguished early from late conversion, 20 of which were obtained from neuropsychological tests. In addition, 69 features (3.7%) had statistically significant changes prior to AD diagnosis. Conclusion: Our results characterized features associated with disease progression from MCI to AD, and, in addition, the log-rank test identified features which are associated with the risk of early conversion.


Epilepsia ◽  
1996 ◽  
Vol 37 (7) ◽  
pp. 651-656 ◽  
Author(s):  
Gregory D. Cascino ◽  
Max R. Trenerry ◽  
Elson L. So ◽  
Frank W. Sharbrough ◽  
Cheolsu Shin ◽  
...  

2007 ◽  
Vol 25 (4) ◽  
pp. 558-559
Author(s):  
M. Gombia ◽  
V. Bortolotti ◽  
P. Fantazzini ◽  
M. Camaiti ◽  
T. Schillaci ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Doan Cong Le ◽  
Krisana Chinnasarn ◽  
Jirapa Chansangrat ◽  
Nattawut Keeratibharat ◽  
Paramate Horkaew

AbstractSegmenting a liver and its peripherals from abdominal computed tomography is a crucial step toward computer aided diagnosis and therapeutic intervention. Despite the recent advances in computing methods, faithfully segmenting the liver has remained a challenging task, due to indefinite boundary, intensity inhomogeneity, and anatomical variations across subjects. In this paper, a semi-automatic segmentation method based on multivariable normal distribution of liver tissues and graph-cut sub-division is presented. Although it is not fully automated, the method minimally involves human interactions. Specifically, it consists of three main stages. Firstly, a subject specific probabilistic model was built from an interior patch, surrounding a seed point specified by the user. Secondly, an iterative assignment of pixel labels was applied to gradually update the probabilistic map of the tissues based on spatio-contextual information. Finally, the graph-cut model was optimized to extract the 3D liver from the image. During post-processing, overly segmented nodal regions due to fuzzy tissue separation were removed, maintaining its correct anatomy by using robust bottleneck detection with adjacent contour constraint. The proposed system was implemented and validated on the MICCAI SLIVER07 dataset. The experimental results were benchmarked against the state-of-the-art methods, based on major clinically relevant metrics. Both visual and numerical assessments reported herein indicated that the proposed system could improve the accuracy and reliability of asymptomatic liver segmentation.


2021 ◽  
Author(s):  
Ruiyang Zhao ◽  
Diego Hernando ◽  
David T. Harris ◽  
Louis A. Hinshaw ◽  
Ke Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Jing Yan ◽  
Bin Zhang ◽  
Shuaitong Zhang ◽  
Jingliang Cheng ◽  
Xianzhi Liu ◽  
...  

AbstractGliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively predict the molecular groups and assess their prognostic value. We retrospectively identified 357 patients with gliomas and extracted radiomic features from their preoperative MRI images. Single-layered radiomic signatures were generated using a single MR sequence using Bayesian-regularization neural networks. Image fusion models were built by combing the significant radiomic signatures. By separately predicting the molecular markers, the predictive molecular groups were obtained. Prognostic nomograms were developed based on the predictive molecular groups and clinicopathologic data to predict progression-free survival (PFS) and overall survival (OS). The results showed that the image fusion model incorporating radiomic signatures from contrast-enhanced T1-weighted imaging (cT1WI) and apparent diffusion coefficient (ADC) achieved an AUC of 0.884 and 0.669 for predicting IDH and TERT status, respectively. cT1WI-based radiomic signature alone yielded favorable performance in predicting 1p/19q status (AUC = 0.815). The predictive molecular groups were comparable to actual ones in predicting PFS (C-index: 0.709 vs. 0.722, P = 0.241) and OS (C-index: 0.703 vs. 0.751, P = 0.359). Subgroup analyses by grades showed similar findings. The prognostic nomograms based on grades and the predictive molecular groups yielded a C-index of 0.736 and 0.735 in predicting PFS and OS, respectively. Accordingly, MRI-based radiomics may be useful for noninvasively detecting molecular groups and predicting survival in gliomas regardless of grades.


Sign in / Sign up

Export Citation Format

Share Document