Enhancing of Electrochemical Characteristics of Li-S System by Means of Optimization of Sulfur Electrode and Electrolyte Composition

2020 ◽  
Vol 99 (1) ◽  
pp. 169-175
Author(s):  
Nataliya I. Globa ◽  
Vitalii A. Sirosh ◽  
Sviatoslav A. Kirillov
2020 ◽  
Vol 86 (9) ◽  
pp. 14-27
Author(s):  
Nataliy Globa ◽  
Tatyana Lisnycha ◽  
Yurii Shmatok ◽  
Vitalii Sirosh ◽  
Sviatoslav Kirillov

The paper presents structural, surface, thermodynamic and kinetic characteristics of titanium dioxide samples obtained by means of alkaline hydrolysis of TiCl4 by LiOH solutions and further heat treatment. TiO2 samples have the anatase structure with crystallite size of 7–10 nm. An increase in the heat treatment temperature from 150 °C to 470 °C leads to a decrease in the specific surface area from 404 to 80 m2/g and the total pore volume from 0.340 to 0.152 cm3/g. The influence of electrolyte composition and surface properties of TiO2 on its behavior in cells with lithium anode investigated by means of galvanostatic cycling and impedance spectroscopy is discussed.


1995 ◽  
Vol 393 ◽  
Author(s):  
Masayuki Morita ◽  
Masashi Ishikawa ◽  
Yoshiharu Matsuda

ABSTRACTA variety of organic solvent-based electrolytes have been studied for ambient temperature, rechargeable lithium (ion) batteries. The ionic behavior of the electrolyte system was investigated through conductivity measurements. The electrochemical characteristics of carbon-based materials (carbon fiber and graphite) as the negative electrode were examined in different compositions of the organic electrolytes. The electrolyte composition as well as the structure of the electrode material greatly influenced the charge/discharge profiles of the electrode.


2021 ◽  
Vol 105 (1) ◽  
pp. 199-207
Author(s):  
Yurii V. Shmatok ◽  
Vitalii A. Sirosh ◽  
Nataliya I. Globa

The paper presents the results of the investigations of structural, morphological and electrochemical characteristics of Na x MnO2 (x = 0.44, 0.67 and 0.8) .It is shown that the crystal structure of the resulting materials is determined by the sodium content and is tunnel in a case of Na0.44MnO2 and layered in a case of Na0.67MnO2 and Na0.8MnO2. In addition, the materials obtained are characterized by different morphology. The initial discharge capacity of the materials obtained increases with the increase of sodium content in oxide phase and is 117, 139 and 151 mAh/g for Na0.44MnO2, Na0.67MnO2 and Na0.8MnO2, respectively, however, at the same time the stability of the specific capacity decreases. Using Na0.44MnO2 as an example, the effect of the electrolyte composition, in particular the presence of FEC, on its electrochemical characteristics is shown.


Author(s):  
F. I. Grace ◽  
L. E. Murr

During the course of electron transmission investigations of the deformation structures associated with shock-loaded thin foil specimens of 70/30 brass, it was observed that in a number of instances preferential etching occurred along grain boundaries; and that the degree of etching appeared to depend upon the various experimental conditions prevailing during electropolishing. These included the electrolyte composition, the average current density, and the temperature in the vicinity of the specimen. In the specific case of 70/30 brass shock-loaded at pressures in the range 200-400 kilobars, the predominant mode of deformation was observed to be twin-type faults which in several cases exhibited preferential etching similar to that observed along grain boundaries. A novel feature of this particular phenomenon was that in certain cases, especially for twins located in the vicinity of the specimen edge, the etching or preferential electropolishing literally isolated these structures from the matrix.


2020 ◽  
Vol 86 (10) ◽  
pp. 18-22
Author(s):  
K. N. Vdovin ◽  
K. G. Pivovarova ◽  
N. A. Feoktistov ◽  
T. B. Ponamareva

Zinc sulfate is the main component in the composition of the acidic zinc plating electrolyte. Deviation in the electrolyte composition from the optimum content leads to destabilization of the electrolysis process and deteriorate the quality of the resulting zinc coating. The proper quality of a zinc coating obtained by galvanic deposition can be ensured only with timely monitoring and adjustment of the electrolyte composition. A technique of X-ray fluorescence determination of zinc (in terms of zinc sulfate) in an acidic zinc plating electrolyte is proposed. The study was carried out using an ARL Quant’X energy dispersive spectrometer (Thermo Fisher Scientific, USA) with a semiconductor silicon-lithium detector. The features of the spectrometer design are presented. The optimal parameters of excitation and detection of zinc radiation were specified when the electrolyte sample was diluted 1:1000. The ZnKα1 line was used as an analytical line. The plotted calibration graph is linear, the correlation coefficient being 0.999234. The results of zinc determination according to the developed method were compared with the data of the reference method of complexometric titration to prove the reliability of the procedure. The results are characterized by good convergence and accuracy. The proposed method of X-ray fluorescence zinc determination in a zinc plating electrolyte equals complexometric titration in the limiting capabilities and even exceeds the latter in terms of the simplicity of sample preparation and rapidity. The developed method of X-ray fluorescence determination of zinc is implemented in analysis of the electrolyte used in the continuous galvanizing unit at «METSERVIS LLC».


2013 ◽  
Vol 28 (12) ◽  
pp. 1291-1295 ◽  
Author(s):  
Ling LIU ◽  
Zhong-Zhi YUAN ◽  
Cai-Xia QIU ◽  
Si-Jie Cheng ◽  
Jin-Cheng LIU

2013 ◽  
Vol 38 (2) ◽  
pp. 225-228
Author(s):  
Xin-yu ZHENG ◽  
Jian-song HUANG ◽  
Shu-yan ZHENG ◽  
Yan SU ◽  
Rui-yu LIN

Sign in / Sign up

Export Citation Format

Share Document