Design and Development of a Novel Flow Field for PEM Fuel Cells to Obtain Uniform Flow Distribution

2019 ◽  
Vol 1 (6) ◽  
pp. 581-604 ◽  
Author(s):  
Mark K. Debe ◽  
Thomas Herdtle
2016 ◽  
Vol 30 (16) ◽  
pp. 1650155 ◽  
Author(s):  
Ebrahim Afshari ◽  
Masoud Ziaei-Rad ◽  
Nabi Jahantigh

In PEM fuel cells, during electrochemical generation of electricity more than half of the chemical energy of hydrogen is converted to heat. This heat of reactions, if not exhausted properly, would impair the performance and durability of the cell. In general, large scale PEM fuel cells are cooled by liquid water that circulates through coolant flow channels formed in bipolar plates or in dedicated cooling plates. In this paper, a numerical method has been presented to study cooling and temperature distribution of a polymer membrane fuel cell stack. The heat flux on the cooling plate is variable. A three-dimensional model of fluid flow and heat transfer in cooling plates with 15 cm × 15 cm square area is considered and the performances of four different coolant flow field designs, parallel field and serpentine fields are compared in terms of maximum surface temperature, temperature uniformity and pressure drop characteristics. By comparing the results in two cases, the constant and variable heat flux, it is observed that applying constant heat flux instead of variable heat flux which is actually occurring in the fuel cells is not an accurate assumption. The numerical results indicated that the straight flow field model has temperature uniformity index and almost the same temperature difference with the serpentine models, while its pressure drop is less than all of the serpentine models. Another important advantage of this model is the much easier design and building than the spiral models.


Author(s):  
S. Meenakshi ◽  
Prakash C. Ghosh

Flow field plays an important role in the performances of the fuel cells, especially in large area fuel cells. In the present work, an innovative, versatile flow field, capable of combining in different conventional modes is reported and evaluated in a polymer electrolyte fuel cell (PEFC) with an active area of 150 cm2. The proposed design is capable of offering serpentine, interdigitated, counterflow, dead-end, and serpentine-interdigitated hybrid mode. Moreover, it is possible to switch over from one flow mode to another mode of flow during operation at any point of time. The flow design consists of the multichannel parallel serpentine flow (SP) field and a pair of an inlet and outlet manifolds instead of conventional single inlet and outlet manifold. Flow distribution was successfully altered without affecting the performances, and it was observed a combination of serpentine and interdigitated on the cathode side offered steady performance for more than 20 min when it was operated at a current density of 700 mA cm−2.


Sign in / Sign up

Export Citation Format

Share Document