scholarly journals Hydrothermal Synthesis of Co3O4/ZnCo2O4 Core-Shell Nanostructures for High-Performance Supercapacitors

Author(s):  
En-Syuan Lin ◽  
Feng-Sheng Chao ◽  
Chen-Jui Liang ◽  
Chi-Jung Chang ◽  
Alex Fang ◽  
...  

Abstract Supercapacitive properties of Co/ZnCo oxide composite with a core-shell nanostructure (Co3O4/ZnCo2O4) prepared directly onto a nickel foam substrate by a two-step hydrothermal method were investigated. The synthesized core-shell structure consisted of some ~40-100 nm in thick flaky ZnCo2O4 deposits coated onto the surface of Co3O4 nanorods measuring ~150 nm in diameter. The specific capacitance value of the Co3O4/ZnCo2O4 core-shell nanostructure synthesized by hydrothermal at 130°C for a ZnCo2O4 deposition time of 2 h can attain 1804 F/g at a scan rate of 5 mV/s. Furthermore, the core-shell structured electrode still exhibited a relatively good capacitance retention of more than 93% after 3000 CV cycles due to the superior structural support of Co3O4 scaffolds. The Co3O4/ZnCo2O4 core-shell structure exhibits excellent electrochemical performances and, as such, is one of the more promising active materials in pseudocapacitor applications.

2021 ◽  
Author(s):  
Yinan Yuan ◽  
Henan Jia ◽  
Zhaoyuan Liu ◽  
Lidong Wang ◽  
J. Sheng ◽  
...  

The design of microstructures and the optimum selection of electrode materials have substantial effects on the electrochemical performances for supercapacitors. A core-shell structured CuCo2S4@Ni(OH)2 electrode material was designed, in which...


2014 ◽  
Vol 16 (42) ◽  
pp. 23451-23460 ◽  
Author(s):  
Qiang Zhang ◽  
Yanghua Deng ◽  
Zhonghua Hu ◽  
Yafei Liu ◽  
Mingming Yao ◽  
...  

A seaurchin-like NiCo2O4@NiMoO4 core–shell structure, which exhibits excellent electrochemical performances was first synthesized via a facile two-step hydrothermal method.


NANO ◽  
2017 ◽  
Vol 12 (05) ◽  
pp. 1750061 ◽  
Author(s):  
Tingting Chen ◽  
Guangning Wang ◽  
Qianyan Ning

Electrodes of rationally designed composite nanostructures can offer many opportunities for the enhanced performance in electrochemical energy storage. This paper attempts to illustrate the design and production of NiMoO4/polypyrrole core–shell nanostructures on nickel foam to be used in supercapacitor via a facile hydrothermal and electrodeposition process. It has been verified that this novel nanoscale morphology has outstanding capacitive performances. While employed as electrodes in supercapacitors, the composite nanostructures showed remarkable electrochemical performances with a great areal capacitance (3.2[Formula: see text]F/cm2 at a current density of 5[Formula: see text]mA/cm2), and a significant cycle stability (80% capacitance retention after 1000 cycles). The above results reveal that the composite nanostructures may be a likely electrode material for high-performance electrochemical capacitors.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750056 ◽  
Author(s):  
Huiping Shao ◽  
Jiangcong Qi ◽  
Tao Lin ◽  
Yuling Zhou ◽  
Fucheng Yu

The core–shell structure composite magnetic nanoparticles (NPs), Fe3O4@chitosan@nimodipine (Fe3O4@CS@NMDP), were successfully synthesized by a chemical cross-linking method in this paper. NMDP is widely used for cardiovascular and cerebrovascular disease prevention and treatment, while CS is of biocompatibility. The composite particles were characterized by an X-ray diffractometer (XRD), a Fourier transform infrared spectroscopy (FT-IR), a transmission electron microscopy (TEM), a vibrating sample magnetometers (VSM) and a high performance liquid chromatography (HPLC). The results show that the size of the core–shell structure composite particles is ranging from 12[Formula: see text]nm to 20[Formula: see text]nm and the coating thickness of NMDP is about 2[Formula: see text]nm. The saturation magnetization of core–shell composite NPs is 46.7[Formula: see text]emu/g, which indicates a good potential application for treating cancer by magnetic target delivery. The release percentage of the NMDP can reach 57.6% in a short time of 20[Formula: see text]min in the PBS, and to 100% in a time of 60[Formula: see text]min, which indicates the availability of Fe3O4@CS@NMDP composite NPs for targeting delivery treatment.


Sign in / Sign up

Export Citation Format

Share Document