Parametric Analysis of Electrode Materials on Thermal Performance of Lithium-Ion Battery: A Material Selection Approach

2018 ◽  
Vol 165 (9) ◽  
pp. A1587-A1594 ◽  
Author(s):  
Abhishek Sarkar ◽  
Pranav Shrotriya ◽  
Abhijit Chandra
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1357
Author(s):  
Wei Li ◽  
Shusheng Xiong ◽  
Xiaojun Zhou ◽  
Wei Shi ◽  
Chongming Wang ◽  
...  

This paper aims to design thermal dummy cells (TDCs) that can be used in the development of lithium-ion battery thermal management systems. Based on physical property and geometry of real 18,650 cylindrical cells, a three-dimensional model of TDCs was designed, and it is used to numerically simulate the thermal performance of TDCs. Simulations show that the TDC can mimic the temperature change on the surface of a real cell both at static and dynamic current load. Experimental results show that the rate of heating resistance of TDC is less than 0.43% for temperatures between 27.5 °C and 90.5 °C. Powered by a two-step voltage source of 12 V, the temperature difference of TDCs is 1 °C and 1.6 °C along the circumference and the axial directions, respectively. Powered by a constant voltage source of 6 V, the temperature rising rates on the surface and in the core are higher than 1.9 °C/min. Afterwards, the proposed TDC was used to simulate a real cell for investigating its thermal performance under the New European Driving Cycle (NEDC), and the same tests were conducted using real cells. The test indicates that the TDC surface temperature matches well with that of the real battery during the NEDC test, while the temperature rise of TDC exceeds that of the real battery during the suburban cycle. This paper demonstrates the feasibility of using TDCs to replace real cells, which can greatly improve safety and efficiency for the development of lithium-ion battery thermal management systems.


2011 ◽  
Vol 133 (9) ◽  
pp. 3139-3143 ◽  
Author(s):  
Jusef Hassoun ◽  
Ki-Soo Lee ◽  
Yang-Kook Sun ◽  
Bruno Scrosati

2009 ◽  
Vol 113 (13) ◽  
pp. 5316-5323 ◽  
Author(s):  
Zineb Edfouf ◽  
María José Aragón ◽  
Bernardo León ◽  
Carlos Pérez Vicente ◽  
José L. Tirado

2021 ◽  
Vol 13 (36) ◽  
pp. 42773-42790
Author(s):  
Zahra Ahaliabadeh ◽  
Ville Miikkulainen ◽  
Miia Mäntymäki ◽  
Seyedabolfazl Mousavihashemi ◽  
Jouko Lahtinen ◽  
...  

2007 ◽  
Vol 52 (22) ◽  
pp. 6346-6352 ◽  
Author(s):  
Yadong Wang ◽  
K. Zaghib ◽  
A. Guerfi ◽  
Fernanda F.C. Bazito ◽  
Roberto M. Torresi ◽  
...  

2021 ◽  
Vol 38 (11) ◽  
pp. 118201
Author(s):  
Jianglong Du ◽  
Haolan Tao ◽  
Yuxin Chen ◽  
Xiaodong Yuan ◽  
Cheng Lian ◽  
...  

Lithium-ion battery packs are made by many batteries, and the difficulty in heat transfer can cause many safety issues. It is important to evaluate thermal performance of a battery pack in designing process. Here, a multiscale method combining a pseudo-two-dimensional model of individual battery and three-dimensional computational fluid dynamics is employed to describe heat generation and transfer in a battery pack. The effect of battery arrangement on the thermal performance of battery packs is investigated. We discuss the air-cooling effect of the pack with four battery arrangements which include one square arrangement, one stagger arrangement and two trapezoid arrangements. In addition, the air-cooling strategy is studied by observing temperature distribution of the battery pack. It is found that the square arrangement is the structure with the best air-cooling effect, and the cooling effect is best when the cold air inlet is at the top of the battery pack. We hope that this work can provide theoretical guidance for thermal management of lithium-ion battery packs.


2014 ◽  
Vol 492 ◽  
pp. 370-374
Author(s):  
Xiao Zhen Liu ◽  
Guang Jian Lu ◽  
Xiao Zhou Liu ◽  
Jie Chen ◽  
Han Zhang Xiao

Pr doped SnO2 particles as negative electrode material of lithium-ion battery are synthesized by the coprecipitation method with SnCl4·5H2O and Pr2O3 as raw materials. The structure of the SnO2 particles and Pr doped SnO2 particles are investigated respectively by XRD analysis. Doping is achieved well by coprecipitation method and is recognized as replacement doping or caulking doping. Electrochemical properties of the SnO2 particles and Pr doped SnO2 particles are tested by charge-discharge and cycle voltammogram experimentation, respectively. The initial specific discharge capacity of Pr doped SnO2 the negative electrode materials is 676.3mAh/g. After 20 cycles, the capacity retention ratio is 90.5%. The reversible capacity of Pr doped SnO2 negative electrode material higher than the reversible capacity of SnO2 negative electrode material. Pr doped SnO2 particles has good lithiumion intercalation/deintercalation performance.


SpringerPlus ◽  
2014 ◽  
Vol 3 (1) ◽  
Author(s):  
Jiping Zhu ◽  
Rui Duan ◽  
Sheng Zhang ◽  
Nan Jiang ◽  
Yangyang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document