Continuous and Conformal Lithium Titanate Spinel Thin Films by Solid State Reaction

2018 ◽  
Vol 165 (8) ◽  
pp. B3184-B3193 ◽  
Author(s):  
Nouha Labyedh ◽  
Brecht Put ◽  
Abdel-Aziz El Mel ◽  
Philippe M. Vereecken
JOM ◽  
2021 ◽  
Author(s):  
Evgeny T. Moiseenko ◽  
Sergey M. Zharkov ◽  
Roman R. Altunin ◽  
Oleg V. Belousov ◽  
Leonid A. Solovyov ◽  
...  

2020 ◽  
Vol 2 (12) ◽  
pp. 3880-3888
Author(s):  
Jian Hui ◽  
Qingyun Hu ◽  
Yuxi Luo ◽  
Tianxing Lai ◽  
Zhan Zhang ◽  
...  

2011 ◽  
Vol 485 ◽  
pp. 119-122
Author(s):  
Motofumi Yamada ◽  
Hiroshi Kawaguchi ◽  
Takayuki Kodera ◽  
Takashi Ogihara

Li4Ti5O12 powders were synthesized by solid state reaction of Li2CO3 and spherical composite powders of carbon and TiO2 (denoted as C/TiO2). C/TiO2 powders were synthesized by spray pyrolysis of using lactic acid aqueous solution. The particle characteristics of Li4Ti5O12 powders were determined by SEM, XRD and DTA-TG. DTA-TG showed that the carbon content was around 8 wt% in Li4Ti5O12 powders. XRD revealed that the spinel structure (Fd3m) was obtained by heating at 750 °C under N2 atmosphere. The first rechargeable capacity of Li4Ti5O12 anode was about 160 mAh/g at 1 C. That of Li4Ti5O12 anode decreased to 90 mAh/g at 20 C. The rechargeable capacity of Li4Ti5O12 anode decreased with increasing the rechargeable rate, but 81% of initial discharge capacity of Li4Ti5O12 anode was retained after 200 cycles at 1C


2017 ◽  
Author(s):  
Vantari Siva ◽  
Debi P. Datta ◽  
S. Prusty ◽  
Pratap K. Sahoo

2012 ◽  
Vol 624 ◽  
pp. 200-203
Author(s):  
Yu Tian Wang ◽  
You Dong Cao ◽  
Jin Hu ◽  
Wei Jun Zhang ◽  
Da Ping Wu ◽  
...  

Fabrication of lithium silicate powder containing lithium titanate by solid phase reaction method. LiFabrication of lithium silicate powder doped with lithium titanate by solid-state reaction. Take lithium carbonate, silicon dioxide and titania as raw materials and then these powders were mixed according to the different ratios and grinded in an agate mortar for 15 min. And then the mixture were dried at 80°C. Finally, the samples were sintered in vacuum tube furnace at 750, 800, 850 and 900°C for 2h. Thermogravimetric analysis, differential scanning calorimetry and XRD analysis were carried out systematically in this paper. The reaction process and mechanism at different temperatures and the effect of the different ratios and sintering temperature were discussed. Experimental results showed that lithium titanate component increased with increasing amount of titanium dioxide. While the mixture were sintered at 900°C for 2h, there would have lithium silicate and lithium titanate phase.


2016 ◽  
Vol 698 ◽  
pp. 60-65 ◽  
Author(s):  
Tôru Kyômen ◽  
Miyu Seki ◽  
Minoru Hanaya ◽  
Hiroshi Takashima

Powder samples of (Ca,Sr)TiO3:Er were prepared by a solid-state reaction method. Photoluminescence due to f-f transitions of Er3+ was not induced by band-gap excitation of (Ca,Sr)TiO3 but by f-f transitions of Er3+. An electroluminescent device in which thin films of Ca0.6Sr0.4TiO3:Er and SnO2:Sb are stacked alternately was prepared by sol-gel and spin-coating methods. Very weak electroluminescence due to f-f transition of Er3+ was observed in the device.


Sign in / Sign up

Export Citation Format

Share Document