Fabrication of Highly Sensitive and Selective Electrochemical Sensors for Detection of Paracetamol by Using Piroxicam Stabilized Gold Nanoparticles

2017 ◽  
Vol 164 (9) ◽  
pp. B427-B434 ◽  
Author(s):  
Syeda Sara Hassan ◽  
Sallahuddin Panhwar ◽  
Ayman Nafady ◽  
Abdullah M. Al-Enizi ◽  
Sirajuddin ◽  
...  
Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1180 ◽  
Author(s):  
Islem Gandouzi ◽  
Mihaela Tertis ◽  
Andreea Cernat ◽  
Dalila Saidane-Mosbahi ◽  
Aranka Ilea ◽  
...  

Pyoverdine is a fluorescent siderophore produced by Pseudomonas aeruginosa that can be considered as a detectable marker in nosocomial infections. The presence of pyoverdine in water can be directly linked to the presence of the P. aeruginosa, thus being a nontoxic and low-cost marker for the detection of biological contamination. A novel platform was developed and applied for the electrochemical selective and sensitive detection of pyoverdine, based on a graphene/graphite-modified screen-printed electrode (SPE) that was electrochemically reduced and decorated with gold nanoparticles (NPs). The optimized sensor presenting higher sensitivity towards pyoverdine was successfully applied for its detection in real samples (serum, saliva, and tap water), in the presence of various interfering species. The excellent analytical performances underline the premises for an early diagnosis kit of bacterial infections based on electrochemical sensors.


2021 ◽  
pp. 106481
Author(s):  
Quang Khanh Nguyen ◽  
Thi Hieu Hoang ◽  
Xuan Thanh Bui ◽  
Thi Anh Huong Nguyen ◽  
Tien Duc Pham ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5456-5465
Author(s):  
Su-Jin Yoon ◽  
Yun-Sik Nam ◽  
Yeonhee Lee ◽  
In Hwan Oh ◽  
Kang-Bong Lee

A highly sensitive and selective colorimetric assay for the dual detection of Hg2+ and As3+ using gold nanoparticles (AuNPs) conjugated with d-penicillamine (DPL) was developed.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2940
Author(s):  
Antonella Curulli

Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.


The Analyst ◽  
2021 ◽  
Vol 146 (8) ◽  
pp. 2679-2688
Author(s):  
Chammari Pothipor ◽  
Noppadol Aroonyadet ◽  
Suwussa Bamrungsap ◽  
Jaroon Jakmunee ◽  
Kontad Ounnunkad

An ultrasensitive electrochemical biosensor based on a gold nanoparticles/graphene/polypyrrole composite modified electrode and a signal amplification strategy employing methylene blue is developed as a potential tool for the detection of miRNA-21.


The Analyst ◽  
2021 ◽  
Author(s):  
Lu Gao ◽  
Jiadi Sun ◽  
Liping Wang ◽  
Qigao Fan ◽  
Gaowen Zhu ◽  
...  

Single-cell electrochemical sensor is used in the local selective detection of living cells because of its high spatial–temporal resolution and sensitivity, as well as its ability to obtain comprehensive cellular physiological states and processes.


The Analyst ◽  
2018 ◽  
Vol 143 (1) ◽  
pp. 297-303 ◽  
Author(s):  
Yang Gao ◽  
Xiufeng Wu ◽  
Hui Wang ◽  
Wenbo Lu ◽  
Mandong Guo

The highly sensitive and selective electrochemical sensor of hesperidin based on gold nanoparticles (AuNPs) and reduced graphene oxide (rGO) modified glassy carbon electrode (GCE) is reported.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Jinchuan Liu ◽  
Wenhui Bai ◽  
Shucao Niu ◽  
Chao Zhu ◽  
Shuming Yang ◽  
...  

2014 ◽  
Vol 6 (7) ◽  
pp. 2221-2226 ◽  
Author(s):  
Xiao-Yan Li ◽  
Zi Yi ◽  
Hao Tang ◽  
Xia Chu ◽  
Ru-Qin Yu

Highly sensitive electrochemical immune analysis was achieved based on dual signal amplification of AuNPs and telomerase extension reaction.


Sign in / Sign up

Export Citation Format

Share Document