scholarly journals Uniform Large-Area Free-Standing Silver Nanowire Arrays on Transparent Conducting Substrates

2016 ◽  
Vol 163 (8) ◽  
pp. D447-D452 ◽  
Author(s):  
Yuyi Feng ◽  
Kwang-Dae Kim ◽  
Clayton A. Nemitz ◽  
Paul Kim ◽  
Thomas Pfadler ◽  
...  
2012 ◽  
Vol 258 (19) ◽  
pp. 7781-7786 ◽  
Author(s):  
Leszek Zaraska ◽  
Grzegorz D. Sulka ◽  
Marian Jaskuła

Author(s):  
Dai Jiu Yi ◽  
Soram Bobby Singh ◽  
Nam Hoon Kim ◽  
Joong Hee Lee

The rational design of free-standing hierarchic core–shell nanoporous architectures is a good strategy for fabricating next-generation electrode materials for application to electrochemical energy conversion/storage systems. Herein, hierarchical core–shell 3D Co9S8@Nix:Moy–Se...


2016 ◽  
Vol 27 (27) ◽  
pp. 275605 ◽  
Author(s):  
M Arefpour ◽  
M Almasi Kashi ◽  
A Ramazani ◽  
A H Montazer

2021 ◽  
Author(s):  
Siyi Yan ◽  
Peng Li ◽  
Zhongshi Ju ◽  
He Chen ◽  
Jiangang Ma

Abstract Silver nanowire (AgNW) networks are promising transparent conducting materials for electromagnetic interference (EMI) shielding and diverse optoelectronic devices. However, the poor contact between adjacent AgNWs leads to low electrical conductivity and weak mechanical stability of AgNW networks, which are limiting the practical application of these electronics. Here we report an efficient strategy to improve the overall performance of AgNW networks, in which the AgNW networks are sandwiched between two layers of graphene films. The graphene films improve the contact of overlapped AgNWs and bridge the discrete AgNWs, and thus increase the conductivity of graphene/AgNWs/graphene (GAG) films. Microwave permittivity measurements together with mechanism analyses reveal that the graphene films can enhance the EMI shielding effectiveness of AgNW networks through offering extra conduction loss, multiple dielectric polarization centers and multi-reflection processes. As a result, the GAG film with an average transmittance of 88% exhibits a sheet resistance lower than 15 Ω sq− 1 and an EMI shielding effectiveness of 31 dB (in the frequency range of 8.2‒12.4 GHz) after repeated stretching and release at a strain of 40%. Such a total performance is superior to that of most of as-reported transparent conductors. The GAG films therefore show application potential in the age of Internet of Things that electromagnetic radiation pollutions are everywhere.


2014 ◽  
Vol 92 (7/8) ◽  
pp. 867-870 ◽  
Author(s):  
Ishwor Khatri ◽  
Qiming Liu ◽  
Ryo Ishikawa ◽  
Keiji Ueno ◽  
Hajime Shirai

We prepare transparent, selfassembled polygonal silver nanowire (AgNW) mesh by bubble template and use as top electrode for a poly (3,4ethylenedioxythiophene):poly(stylenesulfonate) (PEDOT:PSS)/n-Si hybrid solar cell. Devices were fabricated by pressing the self-assembled AgNW and ITO electrodes onto the surface of the PEDOT:PSS and device performances were compared. In identical transmittances of ITO and self-assembled AgNW (i.e., 87% transmittance at wavelength of 550 nm), the self-assembled AgNW mesh electrodes shows lower sheet resistance (8 Ω/square) with enhanced transparency in the ultraviolet and infrared regions. As a result, a device performance with an efficiency of 9.60% was obtained with the self-assembled electrode compared to 9.07% efficiency from the indium–tin oxide (ITO) electrode under 100 mW/cm2 of AM 1.5 illumination. This study suggests the potential application of a self-assembled AgNW electrode as the transparent conducting electrode for future optoelectronic devices.


2010 ◽  
Author(s):  
Joshua D. Caldwell ◽  
Orest J. Glembocki ◽  
Ronald W. Rendell ◽  
Sharka M. Prokes ◽  
James P. Long ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document