scholarly journals Silver-Assisted Electroless Etching of Si Nanowires

2017 ◽  
Vol 75 (52) ◽  
pp. 169-174 ◽  
Author(s):  
Victor H. Velez ◽  
Kalpathy B Sundaram

2013 ◽  
Vol 28 (4) ◽  
pp. 199-204 ◽  
Author(s):  
N Singh ◽  
A K Srivastava ◽  
K N Sood ◽  
A Dhar

2012 ◽  
Vol 1408 ◽  
Author(s):  
H. Karaagac ◽  
M. Parlak ◽  
M. Saif Islam

ABSTRACTSi nanowires (NWs) have been fabricated by Ag-assisted electroless etching technique using an HF/AgNO3 aqueous solution. Scanning electron microscopy (SEM) measurements have revealed that a highly dense array of Si NWs with length of ∼1.4 μm is formed over the surface of both n-type and p-type Si (100) substrates. Following the fabrication of Si NWs, electron-beam evaporated p-type AgGa0.5In0.5Se2 thin film was deposited on the n-type Si NWs to form p-n heterojunction solar cells. The fabricated solar cells yield a 5.50% power conversion efficiency under AM (1.5) illumination.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Roey Elnathan ◽  
Andrew W. Holle ◽  
Jennifer Young ◽  
Marina A. George ◽  
Omri Heifler ◽  
...  

AbstractProgrammable nano-bio interfaces driven by tuneable vertically configured nanostructures have recently emerged as a powerful tool for cellular manipulations and interrogations. Such interfaces have strong potential for ground-breaking advances, particularly in cellular nanobiotechnology and mechanobiology. However, the opaque nature of many nanostructured surfaces makes non-destructive, live-cell characterization of cellular behavior on vertically aligned nanostructures challenging to observe. Here, a new nanofabrication route is proposed that enables harvesting of vertically aligned silicon (Si) nanowires and their subsequent transfer onto an optically transparent substrate, with high efficiency and without artefacts. We demonstrate the potential of this route for efficient live-cell phase contrast imaging and subsequent characterization of cells growing on vertically aligned Si nanowires. This approach provides the first opportunity to understand dynamic cellular responses to a cell-nanowire interface, and thus has the potential to inform the design of future nanoscale cellular manipulation technologies.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 776
Author(s):  
Kurt W. Kolasinski

Electroless etching of semiconductors has been elevated to an advanced micromachining process by the addition of a structured metal catalyst. Patterning of the catalyst by lithographic techniques facilitated the patterning of crystalline and polycrystalline wafer substrates. Galvanic deposition of metals on semiconductors has a natural tendency to produce nanoparticles rather than flat uniform films. This characteristic makes possible the etching of wafers and particles with arbitrary shape and size. While it has been widely recognized that spontaneous deposition of metal nanoparticles can be used in connection with etching to porosify wafers, it is also possible to produced nanostructured powders. Metal-assisted catalytic etching (MACE) can be controlled to produce (1) etch track pores with shapes and sizes closely related to the shape and size of the metal nanoparticle, (2) hierarchically porosified substrates exhibiting combinations of large etch track pores and mesopores, and (3) nanowires with either solid or mesoporous cores. This review discussed the mechanisms of porosification, processing advances, and the properties of the etch product with special emphasis on the etching of silicon powders.


2018 ◽  
Vol 448 ◽  
pp. 126-132 ◽  
Author(s):  
Linmeng Wang ◽  
Xiuquan Gu ◽  
Yulong Zhao ◽  
Meng Wei ◽  
Chunlai Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document