On the Structure-Function Relationship of Cobalt and Manganese Oxides as Oxygen Evolving Catalysts for Light-Driven Water Electrolysis: An In-Line Synchrotron Radiation Photoelectron Spectroscopy Study

Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 185
Author(s):  
Yanxi Li ◽  
Ruoqing Yao ◽  
Yang Chen ◽  
Boran Xu ◽  
Changhui Chen ◽  
...  

The oxygen-evolving center (OEC) in photosystem II (PSII) of plants, algae and cyanobacteria is a unique natural catalyst that splits water into electrons, protons and dioxygen. The crystallographic studies of PSII have revealed that the OEC is an asymmetric Mn4CaO5-cluster. The understanding of the structure-function relationship of this natural Mn4CaO5-cluster is impeded mainly due to the complexity of the protein environment and lack of a rational chemical model as a reference. Although it has been a great challenge for chemists to synthesize the OEC in the laboratory, significant advances have been achieved recently. Different artificial complexes have been reported, especially a series of artificial Mn4CaO4-clusters that closely mimic both the geometric and electronic structures of the OEC in PSII, which provides a structurally well-defined chemical model to investigate the structure-function relationship of the natural Mn4CaO5-cluster. The deep investigations on this artificial Mn4CaO4-cluster could provide new insights into the mechanism of the water-splitting reaction in natural photosynthesis and may help the development of efficient catalysts for the water-splitting reaction in artificial photosynthesis.


2020 ◽  
Vol 1 (1) ◽  
pp. 22-42
Author(s):  
Nan Zhang ◽  
Wenjie Wang ◽  
Tianpei Zhou ◽  
Yangchao Tian ◽  
Wangsheng Chu

Two-dimensional (2D) nanomaterials with unique anisotropy and electronic properties are deemed as an ideal platform for establishing clear relationships between structure and catalytic reactivity. Knowledge of their structures is essential for understanding the catalytic behavior, which further facilitates the development of high-performance catalysts. In this review, we focus on the recent progress of synchrotron radiation X-ray absorption spectrum (XAS) techniques in exploring the structure-function relationship of two-dimensional electrocatalysts. Also, we summarize the application of XAS technique in disclosing key factors that affect the catalytic activity, including identification of local atomic structure, electronic structure and defect structure. Through the characterization of the catalytic process with XAS technique, we further highlight the atomic-level correlation between structure and function in the field of oxygen evolution, oxygen reduction, hydrogen evolution and CO2 reduction. Finally, we propose the major challenges and prospects of XAS technique in advancing the development of two-dimensional electrocatalysts. We anticipate that this review provides critical insights into the application of the XAS technique in electrocatalysis, thereby promoting the development of advanced characterization techniques and the design of high-active catalysts.


Biochemistry ◽  
1982 ◽  
Vol 21 (11) ◽  
pp. 2592-2600 ◽  
Author(s):  
Yee Hsiung Chen ◽  
Jang Chyi Tai ◽  
Wan Jen Huang ◽  
Ming Zong Lai ◽  
Mien Chie Hung ◽  
...  

1987 ◽  
Vol 16 (3-4) ◽  
pp. 219-226 ◽  
Author(s):  
Walter Fiers ◽  
Rudi Beyaert ◽  
Peter Brouckaert ◽  
Bart Everaerdt ◽  
Guy Haegeman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document