Ultra-Thin, High Quality HfO2 on Strained-Ge MOS Capacitors with Low Leakage Current

2014 ◽  
Vol 64 (6) ◽  
pp. 267-271
Author(s):  
J. T. Teherani ◽  
W. Chern ◽  
D. A. Antoniadis ◽  
J. L. Hoyt

2021 ◽  
Vol 285 ◽  
pp. 129120
Author(s):  
Wenxin Liang ◽  
Hongfeng Zhao ◽  
Xiaoji Meng ◽  
Shaohua Fan ◽  
Qingyun Xie

2013 ◽  
Vol 1538 ◽  
pp. 291-302
Author(s):  
Edward Yi Chang ◽  
Hai-Dang Trinh ◽  
Yueh-Chin Lin ◽  
Hiroshi Iwai ◽  
Yen-Ku Lin

ABSTRACTIII-V compounds such as InGaAs, InAs, InSb have great potential for future low power high speed devices (such as MOSFETs, QWFETs, TFETs and NWFETs) application due to their high carrier mobility and drift velocity. The development of good quality high k gate oxide as well as high k/III-V interfaces is prerequisite to realize high performance working devices. Besides, the downscaling of the gate oxide into sub-nanometer while maintaining appropriate low gate leakage current is also needed. The lack of high quality III-V native oxides has obstructed the development of implementing III-V based devices on Si template. In this presentation, we will discuss our efforts to improve high k/III-V interfaces as well as high k oxide quality by using chemical cleaning methods including chemical solutions, precursors and high temperature gas treatments. The electrical properties of high k/InSb, InGaAs, InSb structures and their dependence on the thermal processes are also discussed. Finally, we will present the downscaling of the gate oxide into sub-nanometer scale while maintaining low leakage current and a good high k/III-V interface quality.


2018 ◽  
Vol 65 (2) ◽  
pp. 680-686 ◽  
Author(s):  
Cheng-Jung Lee ◽  
Ke-Jing Lee ◽  
Yu-Chi Chang ◽  
Li-Wen Wang ◽  
Der-Wei Chou ◽  
...  

2021 ◽  
pp. 106413
Author(s):  
Yuexin Yang ◽  
Zhuohui Xu ◽  
Tian Qiu ◽  
Honglong Ning ◽  
Jinyao Zhong ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 016501
Author(s):  
Fumio Otsuka ◽  
Hironobu Miyamoto ◽  
Akio Takatsuka ◽  
Shinji Kunori ◽  
Kohei Sasaki ◽  
...  

Abstract We fabricated high forward and low leakage current trench MOS-type Schottky barrier diodes (MOSSBDs) in combination with a field plate on a 12 μm thick epitaxial layer grown by halide vapor phase epitaxy on β-Ga2O3 (001) substrate. The MOSSBDs, measuring 1.7 × 1.7 mm2, exhibited a forward current of 2 A (70 A cm−2) at 2 V forward voltage and a leakage current of 5.7 × 10–10 A at −1.2 kV reverse voltage (on/off current ratio of > 109) with an ideality factor of 1.05 and wafer-level specific on-resistance of 17.1 mΩ · cm2.


2018 ◽  
Vol 44 (10) ◽  
pp. 862-864 ◽  
Author(s):  
N. A. Maleev ◽  
M. A. Bobrov ◽  
A. G. Kuzmenkov ◽  
A. P. Vasil’ev ◽  
M. M. Kulagina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document