Graphene Oxide for Proton Exchange Membrane and Anion Exchange Membrane Fuel Cells

Author(s):  
Maša Hren ◽  
Mojca Božič ◽  
Darinka Fakin ◽  
Karin Stana Kleinschek ◽  
Selestina Gorgieva

Alkaline anion exchange membrane fuel cells (AAEMFC) are attracting ever-increasing attention, as they are promising electrochemical devices for energy production, presenting a viable opponent to proton exchange membrane fuel cells (PEMFCs).


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6709
Author(s):  
Zhihao Shang ◽  
Ryszard Wycisk ◽  
Peter Pintauro

A fuel cell is an electrochemical device that converts the chemical energy of a fuel and oxidant into electricity. Cation-exchange and anion-exchange membranes play an important role in hydrogen fed proton-exchange membrane (PEM) and anion-exchange membrane (AEM) fuel cells, respectively. Over the past 10 years, there has been growing interest in using nanofiber electrospinning to fabricate fuel cell PEMs and AEMs with improved properties, e.g., a high ion conductivity with low in-plane water swelling and good mechanical strength under wet and dry conditions. Electrospinning is used to create either reinforcing scaffolds that can be pore-filled with an ionomer or precursor mats of interwoven ionomer and reinforcing polymers, which after suitable processing (densification) form a functional membrane. In this review paper, methods of nanofiber composite PEMs and AEMs fabrication are reviewed and the properties of these membranes are discussed and contrasted with the properties of fuel cell membranes prepared using conventional methods. The information and discussions contained herein are intended to provide inspiration for the design of high-performance next-generation fuel cell ion-exchange membranes.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 102
Author(s):  
Yiwei Zheng ◽  
Lyzmarie Nicole Irizarry Colón ◽  
Noor Ul Hassan ◽  
Eric R. Williams ◽  
Morgan Stefik ◽  
...  

Anion exchange membrane fuel cells (AEMFC) are potentially very low-cost replacements for proton exchange membrane fuel cells. However, AEMFCs suffer from one very serious drawback: significant performance loss when CO2 is present in the reacting oxidant gas (e.g., air) due to carbonation. Although the chemical mechanisms for how carbonation leads to voltage loss in operating AEMFCs are known, the way those mechanisms are affected by the properties of the anion exchange membrane (AEM) has not been elucidated. Therefore, this work studies AEMFC carbonation using numerous high-functioning AEMs from the literature and it was found that the ionic conductivity of the AEM plays the most critical role in the CO2-related voltage loss from carbonation, with the degree of AEM crystallinity playing a minor role. In short, higher conductivity—resulting either from a reduction in the membrane thickness or a change in the polymer chemistry—results in faster CO2 migration and emission from the anode side. Although this does lead to a lower overall degree of carbonation in the polymer, it also increases CO2-related voltage loss. Additionally, an operando neutron imaging cell is used to show that as AEMFCs become increasingly carbonated their water content is reduced, which further drives down cell performance.


Sign in / Sign up

Export Citation Format

Share Document