Fluorometric Bio-Sniffer (Gas Phase Biosensor) for Breath Acetone as a Volatile Product of Lipid Metabolism

2016 ◽  
Vol 75 (16) ◽  
pp. 47-51 ◽  
Author(s):  
P.-J. Chien ◽  
M. Ye ◽  
T. Suzuki ◽  
K. Toma ◽  
T. Arakawa ◽  
...  

2021 ◽  
Vol 329 ◽  
pp. 129260
Author(s):  
Koji Toma ◽  
Masato Tsujii ◽  
Takahiro Arakawa ◽  
Yasuhiko Iwasaki ◽  
Kohji Mitsubayashi

2021 ◽  
Vol 6 (1) ◽  
pp. 45
Author(s):  
Takahiro Arakawa ◽  
Ming Ye ◽  
Kenta Iitani ◽  
Koji Toma ◽  
Kohji Mitsubayashi

We developed a highly sensitive acetone bio-sniffer (gas-phase biosensor) based on an enzyme reductive reaction to monitor breath acetone concentration. The acetone bio-sniffer device was constructed by attaching a flow-cell with nicotinamide adenine dinucleotide (NADH)-dependent secondary alcohol dehydrogenase (S-ADH) immobilized membrane onto a fiber-optic NADH measurement system. This system utilizes an ultraviolet light emitting diode as an excitation light source. Acetone vapor was measured as the fluorescence of NADH consumption by the enzymatic reaction of S-ADH. A phosphate buffer that contained oxidized NADH was circulated into the flow-cell to rinse the products and the excessive substrates from the optode; thus, the bio-sniffer enables the real-time monitoring of acetone vapor concentration. A photomultiplier tube detects the change in the fluorescence emitted from NADH. The relationship between the fluorescence intensity and acetone concentration was identified to be from 20 ppb to 5300 ppb. This encompasses the range of concentration of acetone vapor found in the breath of healthy people and of those suffering from disorders of carbohydrate metabolism. Then, the acetone bio-sniffer was used to monitor the exhaled breath acetone concentration change before and after a meal. When the sensing region was exposed to exhaled breath, the fluorescence intensity decreased and reached saturation immediately. Then, it returned to the initial state upon cessation of the exhaled breath flow. We anticipate its future use as a non-invasive analytical tool for the assessment of lipid metabolism in exercise, fasting and diabetes mellitus.


2015 ◽  
Vol 73 ◽  
pp. 208-213 ◽  
Author(s):  
Ming Ye ◽  
Po-Jen Chien ◽  
Koji Toma ◽  
Takahiro Arakawa ◽  
Kohji Mitsubayashi

2016 ◽  
Author(s):  
Kohji Mitsubayashi ◽  
Po-Jen Chien ◽  
Ming Ye ◽  
Takuma Suzuki ◽  
Koji Toma ◽  
...  

Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

The action of water and the electron beam on organic specimens in the electron microscope results in the removal of oxidizable material (primarily hydrogen and carbon) by reactions similar to the water gas reaction .which has the form:The energy required to force the reaction to the right is supplied by the interaction of the electron beam with the specimen.The mass of water striking the specimen is given by:where u = gH2O/cm2 sec, PH2O = partial pressure of water in Torr, & T = absolute temperature of the gas phase. If it is assumed that mass is removed from the specimen by a reaction approximated by (1) and that the specimen is uniformly thinned by the reaction, then the thinning rate in A/ min iswhere x = thickness of the specimen in A, t = time in minutes, & E = efficiency (the fraction of the water striking the specimen which reacts with it).


Author(s):  
Sidney D. Kobernick ◽  
Edna A. Elfont ◽  
Neddra L. Brooks

This cytochemical study was designed to investigate early metabolic changes in the aortic wall that might lead to or accompany development of atherosclerotic plaques in rabbits. The hypothesis that the primary cellular alteration leading to plaque formation might be due to changes in either carbohydrate or lipid metabolism led to histochemical studies that showed elevation of G-6-Pase in atherosclerotic plaques of rabbit aorta. This observation initiated the present investigation to determine how early in plaque formation and in which cells this change could be observed.Male New Zealand white rabbits of approximately 2000 kg consumed normal diets or diets containing 0.25 or 1.0 gm of cholesterol per day for 10, 50 and 90 days. Aortas were injected jin situ with glutaraldehyde fixative and dissected out. The plaques were identified, isolated, minced and fixed for not more than 10 minutes. Incubation and postfixation proceeded as described by Leskes and co-workers.


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


2001 ◽  
Vol 120 (5) ◽  
pp. A546-A546
Author(s):  
D SWARTZBASILE ◽  
M GOLDBLATT ◽  
C SVATEK ◽  
M WALTERS ◽  
S CHOI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document