Bifunctional Redox Active Materials for Flow Battery Applications

2018 ◽  
2020 ◽  
Vol 8 (31) ◽  
pp. 15715-15724 ◽  
Author(s):  
Jingchao Chai ◽  
Amir Lashgari ◽  
Xiao Wang ◽  
Caroline K. Williams ◽  
Jianbing “Jimmy” Jiang

A non-aqueous redox flow battery based on all-PEGylated, metal-free compounds is presented. The PEGylation enhances the stability of the redox-active materials, alleviating crossover by increasing the anolyte and catholyte species’ molecular sizes.


2021 ◽  
Author(s):  
Benjoe Rey Baguio Visayas ◽  
Shyam K. Pahari ◽  
Tugba Ceren Gokoglan ◽  
James A. Golen ◽  
Ertan Agar ◽  
...  

Recent advances in clean, sustainable energy sources such as wind and solar have enabled significant cost improvements, yet their inherent intermittency remains a considerable challenge for year-round reliability demanding the...


2015 ◽  
Vol 3 (29) ◽  
pp. 14971-14976 ◽  
Author(s):  
Jinhua Huang ◽  
Liang Su ◽  
Jeffrey A. Kowalski ◽  
John L. Barton ◽  
Magali Ferrandon ◽  
...  

The development of new high capacity redox active materials is key to realizing the potential of non-aqueous redox flow batteries (RFBs).


2016 ◽  
Vol 12 ◽  
pp. 89-96 ◽  
Author(s):  
Hao Huang ◽  
Christoffer Karlsson ◽  
Maria Strømme ◽  
Martin Sjödin ◽  
Adolf Gogoll

A series of pyrroles functionalized in the 3-position with p-dimethoxybenzene via various linkers (CH2, CH2CH2, CH=CH, C≡C) has been synthesized. Their electronic properties have been deduced from 1H NMR, 13C NMR, and UV–vis spectra to detect possible interactions between the two aromatic subunits. The extent of conjugation between the subunits is largely controlled by the nature of the linker, with the largest conjugation found with the trans-ethene linker and the weakest with the aliphatic linkers. DFT calculations revealed substantial changes in the HOMO–LUMO gap that correlated with the extent of conjugation found experimentally. The results of this work are expected to open up for use of the investigated compounds as components of redox-active materials in sustainable, organic electrical energy storage devices.


2016 ◽  
Vol 56 (3) ◽  
pp. 686-711 ◽  
Author(s):  
Jan Winsberg ◽  
Tino Hagemann ◽  
Tobias Janoschka ◽  
Martin D. Hager ◽  
Ulrich S. Schubert

Synthesis ◽  
2002 ◽  
Vol 2002 (09) ◽  
Author(s):  
Thomas Müller ◽  
Christa Krämer ◽  
Thomas Zimmermann ◽  
Markus Sailer

Sign in / Sign up

Export Citation Format

Share Document