(Invited) The Relationship of Morphology and Catalytic Activity: A Case Study of Iron Corrole Incorporated in High Surface Area Carbon Supports

2020 ◽  
Vol MA2020-01 (48) ◽  
pp. 2702-2702
Author(s):  
Lior Elbaz ◽  
Naomi Levy
Carbon ◽  
2020 ◽  
Vol 158 ◽  
pp. 238-243 ◽  
Author(s):  
Naomi Levy ◽  
Oran Lori ◽  
Shmuel Gonen ◽  
Michal Mizrahi ◽  
Sharon Ruthstein ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3602 ◽  
Author(s):  
Neel Narayan ◽  
Ashokkumar Meiyazhagan ◽  
Robert Vajtai

Nanoparticles play a significant role in various fields ranging from electronics to composite materials development. Among them, metal nanoparticles have attracted much attention in recent decades due to their high surface area, selectivity, tunable morphologies, and remarkable catalytic activity. In this review, we discuss various possibilities for the synthesis of different metal nanoparticles; specifically, we address some of the green synthesis approaches. In the second part of the paper, we review the catalytic performance of the most commonly used metal nanoparticles and we explore a few roadblocks to the commercialization of the developed metal nanoparticles as efficient catalysts.


2020 ◽  
Vol 8 (35) ◽  
pp. 18318-18326 ◽  
Author(s):  
Hailong Peng ◽  
Yangcenzi Xie ◽  
Zicheng Xie ◽  
Yunfeng Wu ◽  
Wenkun Zhu ◽  
...  

Porous high entropy alloy CrMnFeCoNi exhibited remarkable catalytic activity and stability toward p-nitrophenol hydrogenation. The enhanced catalytic performance not only resulted from the high surface area, but also from exposed high-index facets with terraces.


Author(s):  
Nour Bouanimba ◽  
Nassima Laid ◽  
Razika Zouaghi ◽  
Tahar Sehili

Abstract The photocatalytic activities of TiO2 Degussa P25 and Millennium PCs (PC50, PC100, PC105 and PC500) were evaluated by the photocatalytic degradation of Bromothymol Blue (BTB). The relationship between the photocatalytic reaction and the adsorption of BTB on the TiO2 catalysts at acidic, natural and basic mediums of pH was investigated. The crystalline phase, average crystalline size and surface area of the catalyst were found to have a significant influence on the adsorption and photocatalytic activity of the TiO2 samples. The mixed phase of anatase/rutile (Degussa P25) was found to be the most efficient photocatalytical material than pure phase anatase (Millennium PCs) and faster degradation is observed for PC500 compared to other Millennium PCs, this was attributed to the high surface area of PC500. Within the PC50, PC100 and PC105 series, the photocatalytic efficiency increased with the decrease of the surface area. The COD and TOC removals increased slowly, however, the decolorization ratio of BTB increased rapidly at the same time. Thereafter, the efficiency of P25 and PC500 were compared in presence of H2O2, Cl− and HCO3− at different mediums of pH. H2O2 was found to enhance strongly the BTB degradation in presence of P25 with an optimum at natural pH. In contrast, the reaction was inhibited in the presence of PC500, due to the inhibition of dye adsorption. At different pH, the BTB degradation has been significantly inhibited in the presence of the mixtures of HCO3−/H2O2. In contrast, the mixtures of Cl−/H2O2 accelerate the BTB degradation at acidic pH.


Sign in / Sign up

Export Citation Format

Share Document