(Invited) Solar Fuels Produced by Compound Semiconductors

2021 ◽  
Vol MA2021-02 (32) ◽  
pp. 946-946
Author(s):  
Jr Hau He
Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


2015 ◽  
Vol 30 (11) ◽  
pp. 1121 ◽  
Author(s):  
HAN Cheng ◽  
LEI Yong-Peng ◽  
WANG Ying-De
Keyword(s):  

2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


2018 ◽  
Author(s):  
Matthias May ◽  
Kira Rehfeld

Greenhouse gas emissions must be cut to limit global warming to 1.5-2C above preindustrial levels. Yet the rate of decarbonisation is currently too low to achieve this. Policy-relevant scenarios therefore rely on the permanent removal of CO<sub>2</sub> from the atmosphere. However, none of the envisaged technologies has demonstrated scalability to the decarbonization targets for the year 2050. In this analysis, we show that artificial photosynthesis for CO<sub>2</sub> reduction may deliver an efficient large-scale carbon sink. This technology is mainly developed towards solar fuels and its potential for negative emissions has been largely overlooked. With high efficiency and low sensitivity to high temperature and illumination conditions, it could, if developed towards a mature technology, present a viable approach to fill the gap in the negative emissions budget.<br>


Small ◽  
2021 ◽  
pp. 2102429
Author(s):  
Menglin Huang ◽  
Zenghua Cai ◽  
Shanshan Wang ◽  
Xin‐Gao Gong ◽  
Su‐Huai Wei ◽  
...  

Author(s):  
Gong Zhang ◽  
Bin Liu ◽  
Tuo Wang ◽  
Jinglong Gong
Keyword(s):  

RSC Advances ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 87-113
Author(s):  
Rami J. Batrice ◽  
John C. Gordon

Solar energy has been used for decades for the direct production of electricity in various industries and devices. However, harnessing and storing this energy in the form of chemical bonds has emerged as a promising alternative to fossil fuels.


Author(s):  
Hannah J. Sayre ◽  
Lei Tian ◽  
Minjung Son ◽  
Stephanie M. Hart ◽  
Xiao Liu ◽  
...  

Photocatalysis is capable of C–C, C–O, and C–N bond transformations and has the potential to drive light-activated feedstock chemical production.


Sign in / Sign up

Export Citation Format

Share Document