scholarly journals Ethanol-mediated relaxation of guinea pig urinary bladder smooth muscle: involvement of BK and L-type Ca2+ channels

2014 ◽  
Vol 306 (1) ◽  
pp. C45-C58 ◽  
Author(s):  
John Malysz ◽  
Serge A. Y. Afeli ◽  
Aaron Provence ◽  
Georgi V. Petkov

Mechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca2+-activated K+ (BK) channels or L-type voltage-dependent Ca2+ channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.3% vol/vol (∼50 mM) enhanced whole cell BK currents at +30 mV and above, determined by the selective BK channel blocker paxilline. In excised patches recorded at +40 mV and ∼300 nM intracellular Ca2+ concentration ([Ca2+]), EtOH (0.1–0.3%) affected single BK channels (mean conductance ∼210 pS and blocked by paxilline) by increasing the open channel probability, number of open channel events, and open dwell-time constants. The amplitude of single BK channel currents and unitary conductance were not altered by EtOH. Conversely, at ∼10 μM but not ∼2 μM intracellular [Ca2+], EtOH (0.3%) decreased the single BK channel activity. EtOH (0.3%) affected transient BK currents (TBKCs) by either increasing frequency or decreasing amplitude, depending on the basal level of TBKC frequency. In isolated DSM strips, EtOH (0.1–1%) reduced the amplitude and muscle force of spontaneous phasic contractions. The EtOH-induced DSM relaxation, except at 1%, was attenuated by paxilline. EtOH (1%) inhibited L-type VDCC currents in DSM cells. In summary, we reveal the involvement of BK channels and L-type VDCCs in mediating EtOH-induced urinary bladder relaxation accommodating alcohol-induced diuresis.

2014 ◽  
Vol 307 (12) ◽  
pp. C1142-C1150 ◽  
Author(s):  
Wenkuan Xin ◽  
Ning Li ◽  
Qiuping Cheng ◽  
Vitor S. Fernandes ◽  
Georgi V. Petkov

The elevation of protein kinase A (PKA) activity activates the large-conductance voltage- and Ca2+-activated K+ (BK) channels in urinary bladder smooth muscle (UBSM) cells and consequently attenuates spontaneous phasic contractions of UBSM. However, the role of constitutive PKA activity in UBSM function has not been studied. Here, we tested the hypothesis that constitutive PKA activity is essential for controlling the excitability and contractility of UBSM. We used patch clamp electrophysiology, line-scanning confocal and ratiometric fluorescence microscopy on freshly isolated guinea pig UBSM cells, and isometric tension recordings on freshly isolated UBSM strips. Pharmacological inhibition of the constitutive PKA activity with H-89 or PKI 14–22 significantly reduced the frequency and amplitude of spontaneous transient BK channel currents (TBKCs) in UBSM cells. Confocal and ratiometric fluorescence microscopy studies revealed that inhibition of constitutive PKA activity with H-89 reduced the frequency and amplitude of the localized Ca2+ sparks but increased global Ca2+ levels and the magnitude of Ca2+ oscillations in UBSM cells. H-89 abolished the spontaneous transient membrane hyperpolarizations and depolarized the membrane potential in UBSM cells. Inhibition of PKA with H-89 or KT-5720 also increased the amplitude and muscle force of UBSM spontaneous phasic contractions. This study reveals the novel concept that constitutive PKA activity is essential for controlling localized Ca2+ signals generated by intracellular Ca2+ stores and cytosolic Ca2+ levels. Furthermore, constitutive PKA activity is critical for mediating the spontaneous TBKCs in UBSM cells, where it plays a key role in regulating spontaneous phasic contractions in UBSM.


2011 ◽  
Vol 301 (2) ◽  
pp. R351-R362 ◽  
Author(s):  
Thomas J. Heppner ◽  
Jeffrey J. Layne ◽  
Jessica M. Pearson ◽  
Hagop Sarkissian ◽  
Mark T. Nelson

The muscularis mucosae, a type of smooth muscle located between the urothelium and the urinary bladder detrusor, has been described, although its properties and role in bladder function have not been characterized. Here, using mucosal tissue strips isolated from guinea pig urinary bladders, we identified spontaneous phasic contractions (SPCs) that appear to originate in the muscularis mucosae. This smooth muscle layer exhibited Ca2+ waves and flashes, but localized Ca2+ events (Ca2+ sparks, purinergic receptor-mediated transients) were not detected. Ca2+ flashes, often in bursts, occurred with a frequency (∼5.7/min) similar to that of SPCs (∼4/min), suggesting that SPCs are triggered by bursts of Ca2+ flashes. The force generated by a single mucosal SPC represented the maximal force of the strip, whereas a single detrusor SPC was ∼3% of maximal force of the detrusor strip. Electrical field stimulation (0.5–50 Hz) evoked force transients in isolated detrusor and mucosal strips. Inhibition of cholinergic receptors significantly decreased force in detrusor and mucosal strips (at higher frequencies). Concurrent inhibition of purinergic and cholinergic receptors nearly abolished evoked responses in detrusor and mucosae. Mucosal SPCs were unaffected by blocking small-conductance Ca2+-activated K+ (SK) channels with apamin and were unchanged by blocking large-conductance Ca2+-activated K+ (BK) channels with iberiotoxin (IbTX), indicating that SK and BK channels play a much smaller role in regulating muscularis mucosae SPCs than they do in regulating detrusor SPCs. Consistent with this, BK channel current density in myocytes from muscularis mucosae was ∼20% of that in detrusor myocytes. These findings indicate that the muscularis mucosae in guinea pig represents a second smooth muscle compartment that is physiologically and pharmacologically distinct from the detrusor and may contribute to the overall contractile properties of the urinary bladder.


2014 ◽  
Vol 307 (6) ◽  
pp. R571-R584 ◽  
Author(s):  
Georgi V. Petkov

The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, which comprises the bladder wall. The large-conductance voltage- and Ca2+-activated K+ (BK, BKCa, MaxiK, Slo1, or KCa1.1) channel is highly expressed in UBSM and is arguably the most important physiologically relevant K+ channel that regulates UBSM function. Its significance arises from the fact that the BK channel is the only K+ channel that is activated by increases in both voltage and intracellular Ca2+. The BK channels control UBSM excitability and contractility by maintaining the resting membrane potential and shaping the repolarization phase of the spontaneous action potentials that determine UBSM spontaneous rhythmic contractility. In UBSM, these channels have complex regulatory mechanisms involving integrated intracellular Ca2+ signals, protein kinases, phosphodiesterases, and close functional interactions with muscarinic and β-adrenergic receptors. BK channel dysfunction is implicated in some forms of bladder pathologies, such as detrusor overactivity, and related overactive bladder. This review article summarizes the current state of knowledge of the functional role of UBSM BK channels under normal and pathophysiological conditions and provides new insight toward the BK channels as targets for pharmacological or genetic control of UBSM function. Modulation of UBSM BK channels can occur by directly or indirectly targeting their regulatory mechanisms, which has the potential to provide novel therapeutic approaches for bladder dysfunction, such as overactive bladder and detrusor underactivity.


2014 ◽  
Vol 306 (5) ◽  
pp. C460-C470 ◽  
Author(s):  
Kiril L. Hristov ◽  
Amy C. Smith ◽  
Shankar P. Parajuli ◽  
John Malysz ◽  
Georgi V. Petkov

Large-conductance voltage- and Ca2+-activated K+ (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca2+ imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca2+ sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca2+ levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca2+-dependent mechanism, thus increasing DSM contractility.


2001 ◽  
Vol 534 (2) ◽  
pp. 313-326 ◽  
Author(s):  
Yoshiaki Ohi ◽  
Hisao Yamamura ◽  
Norihiro Nagano ◽  
Susumu Ohya ◽  
Katsuhiko Muraki ◽  
...  

2016 ◽  
Vol 6 (4) ◽  
pp. 563-575 ◽  
Author(s):  
Neil D. Detweiler ◽  
Li Song ◽  
Samantha J. McClenahan ◽  
Rachel J. Versluis ◽  
Sujay V. Kharade ◽  
...  

A loss of K+ efflux in pulmonary arterial smooth muscle cells (PASMCs) contributes to abnormal vasoconstriction and PASMC proliferation during pulmonary hypertension (PH). Activation of high-conductance Ca2+-activated (BK) channels represents a therapeutic strategy to restore K+ efflux to the affected PASMCs. However, the properties of BK channels in PASMCs—including sensitivity to BK channel openers (BKCOs)—are poorly defined. The goal of this study was to compare the properties of BK channels between PASMCs of normoxic (N) and chronic hypoxic (CH) rats and then explore key findings in human PASMCs. Polymerase chain reaction results revealed that 94.3% of transcripts encoding BKα pore proteins in PASMCs from N rats represent splice variants lacking the stress axis regulated exon insert, which confers oxygen sensitivity. Subsequent patch-clamp recordings from inside-out (I-O) patches confirmed a dense population of BK channels insensitive to hypoxia. The BK channels were highly activated by intracellular Ca2+ and the BKCO lithocholate; these responses require BK α-β1 subunit coupling. PASMCs of CH rats with established PH exhibited a profound overabundance of the dominant oxygen-insensitive BKα variant. Importantly, human BK (hBK) channels in PASMCs from human donor lungs also represented the oxygen-insensitive BKα variant activated by BKCOs. The hBK channels showed significantly enhanced Ca2+ sensitivity compared with rat BK channels. We conclude that rat BK and hBK channels in PASMCs are oxygen-insensitive BK α-β1 complexes highly sensitive to Ca2+ and the BKCO lithocholate. BK channels are overexpressed in PASMCs of a rat model of PH and may provide an abundant target for BKCOs designed to restore K+ efflux.


2008 ◽  
Vol 295 (5) ◽  
pp. C1344-C1353 ◽  
Author(s):  
Kiril L. Hristov ◽  
Xiangli Cui ◽  
Sean M. Brown ◽  
Lei Liu ◽  
Whitney F. Kellett ◽  
...  

We investigated the role of large-conductance Ca2+-activated K+ (BK) channels in β3-adrenoceptor (β3-AR)-induced relaxation in rat urinary bladder smooth muscle (UBSM). BRL 37344, a specific β3-AR agonist, inhibits spontaneous contractions of isolated UBSM strips. SR59230A, a specific β3-AR antagonist, and H89, a PKA inhibitor, reduced the inhibitory effect of BRL 37344. Iberiotoxin, a specific BK channel inhibitor, shifts the BRL 37344 concentration response curves for contraction amplitude, net muscle force, and tone to the right. Freshly dispersed UBSM cells and the perforated mode of the patch-clamp technique were used to determine further the role of β3-AR stimulation by BRL 37344 on BK channel activity. BRL 37344 increased spontaneous, transient, outward BK current (STOC) frequency by 46.0 ± 20.1%. In whole cell mode at a holding potential of Vh = 0 mV, the single BK channel amplitude was 5.17 ± 0.28 pA, whereas in the presence of BRL 37344, it was 5.55 ± 0.41 pA. The BK channel open probability was also unchanged. In the presence of ryanodine and nifedipine, the current-voltage relationship in response to depolarization steps in the presence and absence of BRL 37344 was identical. In current-clamp mode, BRL 37344 caused membrane potential hyperpolarization from −26.1 ± 2.1 mV (control) to −29.0 ± 2.2 mV. The BRL 37344-induced hyperpolarization was eliminated by application of iberiotoxin, tetraethylammonium or ryanodine. The data indicate that stimulation of β3-AR relaxes rat UBSM by increasing the BK channel STOC frequency, which causes membrane hyperpolarization and thus relaxation.


2013 ◽  
Vol 304 (5) ◽  
pp. F451-F462 ◽  
Author(s):  
Joseph A. Hypolite ◽  
Qi Lei ◽  
Shaohua Chang ◽  
Stephen A. Zderic ◽  
Stephan Butler ◽  
...  

Protein kinase C (PKC) and large conductance Ca2+-activated potassium channels (BK) are downregulated in the detrusor smooth muscle (DSM) in partial bladder outlet obstruction (PBOO). DSM from these bladders display increased spontaneous activity. This study examines the involvement of PKC in the regulation of spontaneous and evoked DSM contractions and whether pharmacologic inhibition of PKC in normal DSM contributes to increased detrusor excitability. Results indicate the PKC inhibitor bisindolylmaleimide 1 (Bim-1) prevented a decline in the amplitude of spontaneous DSM contractions over time in vitro, and these contractions persist in the presence of tetrodotoxin. Bim-1 also reduced the basal DSM tone, and the ability to maintain force in response to electrical field stimulation, but did not affect maximum contraction. The PKC activator phorbol-12,13-dibutyrate (PDBu) significantly reduced the amplitude and increased the frequency of spontaneous contractions at low concentrations (10 nM), while causing an increase in force at higher concentrations (1 μM). Preincubation of DSM strips with iberiotoxin prevented the inhibition of spontaneous contractions by PDBu. The BK channel openers isopimaric acid and NS1619 reduced the Bim-1-induced enhancement of spontaneous contractions in DSM strips. Our data suggest that PKC has a biphasic activation profile in the DSM and that it may play an important role in maintaining the quiescent state of the normal bladder during storage through the effects on BK channel, while helping to maintain force required for bladder emptying. The data also suggest that PKC dysfunction, as seen in PBOO, contributes to detrusor overactivity.


2007 ◽  
Vol 292 (1) ◽  
pp. R616-R624 ◽  
Author(s):  
Matthias E. Werner ◽  
Anna-Maria Knorn ◽  
Andrea L. Meredith ◽  
Richard W. Aldrich ◽  
Mark T. Nelson

In the urinary bladder, contractions of the detrusor muscle and urine voiding are induced by the neurotransmitters ACh and ATP, released from parasympathetic nerves. Activation of K+ channels, in particular the large-conductance Ca2+-activated K+ (BK) channels, opposes increases in excitability and contractility of urinary bladder smooth muscle (UBSM). We have shown that deleting the gene mSlo1 in mice ( Slo−/−), encoding the BK channel, leads to enhanced nerve-mediated and neurotransmitter-dependent contractility of UBSM ( 38 ). Here, we examine the location of the BK channel in urinary bladder strips from mouse. Immunohistochemical analysis revealed that the channel is expressed in UBSM but not in nerves that innervate the smooth muscle. The relationship between electrical field stimulation and force generation of the cholinergic and purinergic pathways was examined by applying blockers of the respective receptors in UBSM strips from wild-type and from Slo−/− (knockout) mice. In wild-type strips, the stimulation frequency required to obtain a half-maximal force was significantly lower for the purinergic (7.2 ± 0.3 Hz) than the cholinergic pathway (19.1 ± 1.5 Hz), whereas the maximum force was similar. Blocking BK channels with iberiotoxin or ablation of the Slo gene increased cholinergic- and purinergic-mediated force at low frequencies, i.e., significantly decreased the frequency for a half-maximal force. Our results indicate that the BK channel has a very significant role in reducing both cholinergic- and purinergic-induced contractility and suggest that alterations in BK channel expression or function could contribute to pathologies such as overactive detrusor.


2012 ◽  
Vol 302 (11) ◽  
pp. C1632-C1641 ◽  
Author(s):  
Kiril L. Hristov ◽  
Shankar P. Parajuli ◽  
Rupal P. Soder ◽  
Qiuping Cheng ◽  
Eric S. Rovner ◽  
...  

Overactive bladder syndrome is frequently associated with increased detrusor smooth muscle (DSM) contractility. We tested the hypothesis that pharmacological activation of the large-conductance voltage- and Ca2+-activated K+(BK) channel with NS-1619, a selective BK channel opener, reduces the excitability and contractility of human DSM. We used the amphotericin-perforated whole cell patch-clamp technique on freshly isolated human DSM cells, live-cell Ca2+imaging, and isometric DSM tension recordings of human DSM strips obtained from open bladder surgeries. NS-1619 (30 μM) significantly increased the amplitude of the voltage step-induced whole cell BK currents, and this effect was abolished by pretreatment with 200 nM iberiotoxin (IBTX), a selective BK channel inhibitor. In current-clamp mode, NS-1619 (30 μM) significantly hyperpolarized the resting membrane potential, and the hyperpolarization was reversed by IBTX (200 nM). NS-1619 (30 μM) significantly decreased the intracellular Ca2+level in isolated human DSM cells. BK channel activation with NS-1619 (30 μM) significantly inhibited the amplitude, muscle force, frequency, duration, and tone of the spontaneous phasic and pharmacologically induced DSM contractions from human DSM isolated strips. IBTX (200 nM) suppressed the inhibitory effects of NS-1619 on spontaneous contractions. The amplitude of electrical field stimulation (0.5–50 Hz)-induced contractions was significantly reduced by NS-1619 (30 μM). Our data suggest that pharmacological activation of BK channels could represent a novel treatment option to control bladder dysfunction in humans.


Sign in / Sign up

Export Citation Format

Share Document