scholarly journals Cyclic AMP-Rap1A signaling mediates cell surface translocation of microvascular smooth muscle α2C-adrenoceptors through the actin-binding protein filamin-2

2013 ◽  
Vol 305 (8) ◽  
pp. C829-C845 ◽  
Author(s):  
Hanaa K. B. Motawea ◽  
Selvi C. Jeyaraj ◽  
Ali H. Eid ◽  
Srabani Mitra ◽  
Nicholas T. Unger ◽  
...  

The second messenger cyclic AMP (cAMP) plays a vital role in vascular physiology, including vasodilation of large blood vessels. We recently demonstrated cAMP activation of Epac-Rap1A and RhoA-Rho-associated kinase (ROCK)-F-actin signaling in arteriolar-derived smooth muscle cells increases expression and cell surface translocation of functional α2C-adrenoceptors (α2C-ARs) that mediate vasoconstriction in small blood vessels (arterioles). The Ras-related small GTPAse Rap1A increased expression of α2C-ARs and also increased translocation of perinuclear α2C-ARs to intracellular F-actin and to the plasma membrane. This study examined the mechanism of translocation to better understand the role of these newly discovered mediators of blood flow control, potentially activated in peripheral vascular disorders. We utilized a yeast two-hybrid screen with human microvascular smooth muscle cells (microVSM) cDNA library and the α2C-AR COOH terminus to identify a novel interaction with the actin cross-linker filamin-2. Yeast α-galactosidase assays, site-directed mutagenesis, and coimmunoprecipitation experiments in heterologous human embryonic kidney (HEK) 293 cells and in human microVSM demonstrated that α2C-ARs, but not α2A-AR subtype, interacted with filamin. In Rap1-stimulated human microVSM, α2C-ARs colocalized with filamin on intracellular filaments and at the plasma membrane. Small interfering RNA-mediated knockdown of filamin-2 inhibited Rap1-induced redistribution of α2C-ARs to the cell surface and inhibited receptor function. The studies suggest that cAMP-Rap1-Rho-ROCK signaling facilitates receptor translocation and function via phosphorylation of filamin-2 Ser2113. Together, these studies extend our previous findings to show that functional rescue of α2C-ARs is mediated through Rap1-filamin signaling. Perturbation of this signaling pathway may lead to alterations in α2C-AR trafficking and physiological function.

2012 ◽  
Vol 303 (5) ◽  
pp. C499-C511 ◽  
Author(s):  
Selvi C. Jeyaraj ◽  
Nicholas T. Unger ◽  
Ali H. Eid ◽  
Srabani Mitra ◽  
N. Paul El-Dahdah ◽  
...  

Intracellular signaling by the second messenger cyclic AMP (cAMP) activates the Ras-related small GTPase Rap1 through the guanine exchange factor Epac. This activation leads to effector protein interactions, activation, and biological responses in the vasculature, including vasorelaxation. In vascular smooth muscle cells derived from human dermal arterioles (microVSM), Rap1 selectively regulates expression of G protein-coupled α2C-adrenoceptors (α2C-ARs) through JNK-c-jun nuclear signaling. The α2C-ARs are generally retained in the trans-Golgi compartment and mobilize to the cell surface and elicit vasoconstriction in response to cellular stress. The present study used human microVSM to examine the role of Rap1 in receptor localization. Complementary approaches included murine microVSM derived from tail arteries of C57BL6 mice that express functional α2C-ARs and mice deficient in Rap1A (Rap1A-null). In human microVSM, increasing intracellular cAMP by direct activation of adenylyl cyclase by forskolin (10 μM) or selectively activating Epac-Rap signaling by the cAMP analog 8-pCPT-2′- O-Me-cAMP (100 μM) activated RhoA, increased α2C-AR expression, and reorganized the actin cytoskeleton, increasing F-actin. The α2C-ARs mobilized from the perinuclear region to intracellular filamentous structures and to the plasma membrane. Similar results were obtained in murine wild-type microVSM, coupling Rap1-Rho-actin dynamics to receptor relocalization. This signaling was impaired in Rap1A-null murine microVSM and was rescued by delivery of constitutively active (CA) mutant of Rap1A. When tested in heterologous HEK293 cells, Rap1A-CA or Rho-kinase (ROCK-CA) caused translocation of functional α2C-ARs to the cell surface (∼4- to 6-fold increase, respectively). Together, these studies support vascular bed-specific physiological role of Rap1 and suggest a role in vasoconstriction in microVSM.


2010 ◽  
Vol 299 (3) ◽  
pp. C682-C694 ◽  
Author(s):  
Rachael Crnich ◽  
Gregory C. Amberg ◽  
M. Dennis Leo ◽  
Albert L. Gonzales ◽  
Michael M. Tamkun ◽  
...  

The melastatin (M) transient receptor potential (TRP) channel TRPM4 mediates pressure and protein kinase C (PKC)-induced smooth muscle cell depolarization and vasoconstriction of cerebral arteries. We hypothesized that PKC causes vasoconstriction by stimulating translocation of TRPM4 to the plasma membrane. Live-cell confocal imaging and fluorescence recovery after photobleaching (FRAP) analysis was performed using a green fluorescent protein (GFP)-tagged TRPM4 (TRPM4-GFP) construct expressed in A7r5 cells. The surface channel was mobile, demonstrating a FRAP time constant of 168 ± 19 s. In addition, mobile intracellular trafficking vesicles were readily detected. Using a cell surface biotinylation assay, we showed that PKC activation with phorbol 12-myristate 13-acetate (PMA) increased (∼3-fold) cell surface levels of TRPM4-GFP protein in <10 min. Similarly, total internal reflection fluorescence microscopy demonstrated that stimulation of PKC activity increased (∼3-fold) the surface fluorescence of TRPM4-GFP in A7r5 cells and primary cerebral artery smooth muscle cells. PMA also caused an elevation of cell surface TRPM4 protein levels in intact arteries. PMA-induced translocation of TRPM4 to the plasma membrane was independent of PKCα and PKCβ activity but was inhibited by blockade of PKCδ with rottlerin. Pressure-myograph studies of intact, small interfering RNA (siRNA)-treated cerebral arteries demonstrate that PKC-induced constriction of cerebral arteries requires expression of both TRPM4 and PKCδ. In addition, pressure-induced arterial myocyte depolarization and vasoconstriction was attenuated in arteries treated with siRNA against PKCδ. We conclude that PKCδ activity causes smooth muscle depolarization and vasoconstriction by increasing the number of TRPM4 channels in the sarcolemma.


2019 ◽  
Vol 33 (9) ◽  
pp. 9785-9796 ◽  
Author(s):  
Takuro Numaga‐Tomita ◽  
Tsukasa Shimauchi ◽  
Sayaka Oda ◽  
Tomohiro Tanaka ◽  
Kazuhiro Nishiyama ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Kaveh Sanaei ◽  
Sydney Plotner ◽  
Anson Oommen Jacob ◽  
Jaime Ramirez-Vick ◽  
Narendra Vyavahare ◽  
...  

BACKGROUND: The main objective of tissue engineering is to fabricate a tissue construct that mimics native tissue both biologically and mechanically. A recurring problem for tissue-engineered blood vessels (TEBV) is deficient elastogenesis from seeded smooth muscle cells. Elastin is an integral mechanical component in blood vessels, allowing elastic deformation and retraction in response to the shear and pulsatile forces of the cardiac system. OBJECTIVE: The goal of this research is to assess the effect of the vitamin A derivative all-trans retinoic acid (RA) and polyphenol pentagalloyl glucose (PGG) on the expression of elastin in human aortic smooth muscle cells (hASMC). METHODS: A polycaprolactone (PCL) and the gelatin polymer composite was electrospun and doped with RA and PGG. The scaffolds were subsequently seeded with hASMCs and incubated for five weeks. The resulting tissue-engineered constructs were evaluated using qPCR and Fastin assay for their elastin expression and deposition. RESULTS: All treatments showed an increased elastin expression compared to the control, with PGG treatments showing a significant increase in gene expression and elastin deposition.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Cheikh Seye ◽  
Wilbert Derbigny ◽  
Shaomin Qian

Rationale: Single nucleotide polymorphism (SNP) in the LGASL2 galectin-2 (Gal-2) gene leads to altered secretion of lymphotoxin-α (LT-α) and is associated with coronary artery disease. Objective:Our aim was to determine whether factors other than genetic variations in LGASL2 regulate LT-α release and to define the role of this pro-inflammatory in vascular smooth muscle cells (SMC). Methods and results: The proinflammatory cytokine lymphotoxin-alpha (LTA) is thought to contribute to the pathogenesis of atherosclerosis. However, the mechanisms that regulate its expression in VSMC are poorly understood. The ability of exogenous nucleotides to stimulate LTA production was evaluated in VSMC by ELISA. The P2Y 2 nucleotide receptor (P2Y 2 R) agonist UTP stimulates a strong and sustained release of LTA from wild-type but not P2Y 2 R -/- SMC. Assessment of LTA gene transcription by LTA promoter-luciferase construct indicated that LTA levels are controlled at the level of transcription. We show using RNAi techniques that knockdown of the actin-binding protein filamin-A (FLNa) severely impaired nucleotide-induced Rho activation and consequent Rho-mediated LTA secretion. Re-introduction of FLNa in FLNa RNAi SMC rescued UTP-induced LTA expression. In addition, we found UTP-stimulated LTA secretion is not sensitive to brefeldin A (BFA), which blocks the formation of vesicles involved in protein transport from the ER to the Golgi apparatus, suggesting that P2Y 2 R/filamin-mediated secretion of LTA is independent of the ER/Golgi secretory vesicle route. Furthermore, UTP selectively induces ICAM-1 expression in WT but not SMC expressing a truncated P2Y 2 R deficient in LTA secretion. Conclusion: These data suggest that P2Y 2 R recruits FLNa to provide a cytoskeletal scaffold necessary for Rho signaling pathway upstream of LTA release and subsequent stimulation of ICAM-1 expression on VSMC.


Sign in / Sign up

Export Citation Format

Share Document