Characterization of potassium permeability of cochlear duct by perilymphatic perfusion of barium

1984 ◽  
Vol 247 (3) ◽  
pp. C240-C246 ◽  
Author(s):  
D. C. Marcus

The relative transepithelial "permeabilities" of the cochlear duct to K, Na, and Cl were investigated so as to identify the K-selective tissues and to determine the cellular origin of this selectivity. Single-ion substitutions were made for K, Na, and Cl with the impermeant species N-methyl-D-glucamine (NMDG) for K and Na and gluconate or sulfate for Cl in perilymph. Transepithelial potential changes were relatively slow and small for Na and Cl substitutions. However, either K for Na or K for NMDG substitutions demonstrated a pronounced K selectivity (rapid changes of electrical potential) of only the sensory-cell tissue (organ of Corti). The response to the K for Na substitution was most clearly seen after electrogenic K transport was inhibited by ischemia while the sensory cells were metabolically sustained via perilymphatic perfusion. Under this condition, perfusion of a medium containing 154 mM K gluconate reduced the negative potential (typically -25 to -40 mV) to within a few millivolts of zero. In a control medium, perilymphatic barium (0.5-5 mM) produced qualitatively similar effects, suggesting that this K selectivity is localized primarily at the basolateral membrane of the sensory cells rather than at the junctional complexes.

1987 ◽  
Vol 89 (4) ◽  
pp. 541-562 ◽  
Author(s):  
J R Demarest ◽  
A L Finn

Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that permitted rapid changes in the ion composition of the serosal solution. The transepithelial electrical properties exhibited a marked seasonal variation that could be attributed to variations in the conductance of the shunt pathway, apical membrane selectivity, and basolateral Na+ transport. In contrast, the passive electrical properties of the basolateral membrane remained constant throughout the year. The apparent transference numbers (Ti) of the basolateral membrane for K+ and Cl- were determined from the effect on the basolateral membrane equivalent electromotive force of a sudden increase in the serosal K+ concentration from 2.5 to 50 mM/liter or a decrease in the Cl- concentration from 101 to 10 mM/liter. TK and TCl were 0.71 +/- 0.05 and 0.04 +/- 0.01, respectively. The basolateral K+ conductance could be blocked by Ba2+ (0.5 mM), Cs+ (10 mM), or Rb+ (10 mM), but was unaffected by 3,4-diaminopyridine (100 microM), decamethonium (100 microM), or tetraethylammonium (10 mM). We conclude that a highly selective K+ conductance dominates the electrical properties of the basolateral membrane and that this conductance is different from those found in nerve and muscle membranes.


1996 ◽  
Vol 271 (4) ◽  
pp. C1122-C1130 ◽  
Author(s):  
O. Mayorga-Wark ◽  
W. P. Dubinsky ◽  
S. G. Schultz

K+ channels present in basolateral membrane vesicles isolated from Necturus maculosa small intestinal cells and reconstituted into planar phospholipid bilayers are inhibited by MgATP and sulfonylurea derivatives, such as tolbutamide and glibenclamide, when these agents are added to the solution bathing the inner mouth of the channel. In addition, these channels possess an intrinsic "voltage gate" and are blocked when the electrical potential difference across the channel is oriented so that the inner solution is electrically positive with respect to the outer solution. We now show that increasing the concentration of permeant ions such as K+ or Rb+ in the outer solution reverses channel inhibition resulting from the addition of 50 microM glibenclamide to the inner solution and also inhibits intrinsic voltage gating; these effects are not elicited by increasing the concentrations of the relatively impermeant ions, Na+ or choline, in the outer solution. Furthermore, increasing the K+ concentration in the outer solution in the absence of glibenclamide inhibits voltage gating, and, under these conditions, the subsequent addition of glibenclamide to the inner solution is ineffective. These results are consistent with a model in which the voltage gate is an open-channel blocker whose action is directly reversed by elevating the external concentration of relatively permeant cations and where the action of glibenclamide is to stabilize the inactivated state of the channel, possibly through hydrophobic interactions.


2014 ◽  
Vol 69 (10-11) ◽  
pp. 597-605 ◽  
Author(s):  
A. Wesam Al-Mufti ◽  
Uda Hashim ◽  
Md. Mijanur Rahman ◽  
Tijjani Adam

AbstractThe distribution of electric potential and space charge in a silicon nanowire has been investigated. First, a model of the nanowire is generated taking into consideration the geometry and physics of the nanowire. The physics of the nanowire was modelled by a set of partial differential equations (PDEs) which were solved using the finite element method (FEM). Comprehensive simulation experiments were performed on the model in order to compute the distribution of potential and space charge. We also determined, through simulation, how the characteristic of the nanowire is affected by its dimensions. The characterization of the resulting nanowire, calculated by COMSOL Multiphysics, shows different dimensions and their effect on space charge and electrical potential


1976 ◽  
Vol 81 (1-2) ◽  
pp. 36-47 ◽  
Author(s):  
S. Iurato ◽  
K. Franke ◽  
L. Luciano ◽  
G. Wermbter ◽  
E. Pannese ◽  
...  

Author(s):  
Jeffrey T. Bingham ◽  
Marco P. Schoen

Human muscle motion is initiated in the central nervous system where a nervous signal travels through the body and the motor neurons excite the muscles to move. These signals, termed myoelectric signals, can be measured on the surface of the skin as an electrical potential. By analyzing these signals it is possible to determine the muscle actions the signals elicit, and thus can be used in manipulating smart prostheses and teleoperation of machinery. Due to the randomness of myoelectric signals, identification of the signals is not complete, therefore the goal of this project is to complete a study of the characterization of one set of hand motions using current system identification methods. The gripping motion of the hand and the corresponding myoelectric signals are measured and the data captured with a personal computer. Using computer software the captured data are processed and finally subjected to several system identification routines. Using this technique it is possible to construct a mathematical model that correlates the myoelectric signals with the matching hand motion.


1991 ◽  
Vol 11 (8) ◽  
pp. 2303-2313 ◽  
Author(s):  
KE Kruger ◽  
WS Sossin ◽  
TC Sacktor ◽  
PJ Bergold ◽  
S Beushausen ◽  
...  
Keyword(s):  

2003 ◽  
Vol 185 (15) ◽  
pp. 4442-4449 ◽  
Author(s):  
Gregory M. Cook ◽  
Stefanie Keis ◽  
Hugh W. Morgan ◽  
Christoph von Ballmoos ◽  
Ulrich Matthey ◽  
...  

ABSTRACT We describe here purification and biochemical characterization of the F1Fo-ATP synthase from the thermoalkaliphilic organism Bacillus sp. strain TA2.A1. The purified enzyme produced the typical subunit pattern of an F1Fo-ATP synthase on a sodium dodecyl sulfate-polyacrylamide gel, with F1 subunits α, β, γ, δ, and ε and Fo subunits a, b, and c. The subunits were identified by N-terminal protein sequencing and mass spectroscopy. A notable feature of the ATP synthase from strain TA2.A1 was its specific blockage in ATP hydrolysis activity. ATPase activity was unmasked by using the detergent lauryldimethylamine oxide (LDAO), which activated ATP hydrolysis >15-fold. This activation was the same for either the F1Fo holoenzyme or the isolated F1 moiety, and therefore latent ATP hydrolysis activity is an intrinsic property of F1. After reconstitution into proteoliposomes, the enzyme catalyzed ATP synthesis driven by an artificially induced transmembrane electrical potential (Δψ). A transmembrane proton gradient or sodium ion gradient in the absence of Δψ was not sufficient to drive ATP synthesis. ATP synthesis was eliminated by the electrogenic protonophore carbonyl cyanide m-chlorophenylhydrazone, while the electroneutral Na+/H+ antiporter monensin had no effect. Neither ATP synthesis nor ATP hydrolysis was stimulated by Na+ ions, suggesting that protons are the coupling ions of the ATP synthase from strain TA2.A1, as documented previously for mesophilic alkaliphilic Bacillus species. The ATP synthase was specifically modified at its c subunits by N,N′-dicyclohexylcarbodiimide, and this modification inhibited ATP synthesis.


1988 ◽  
Vol 255 (3) ◽  
pp. G286-G291 ◽  
Author(s):  
R. C. Orlando ◽  
N. A. Tobey ◽  
V. J. Schreiner ◽  
R. D. Readling

The transmural electrical potential difference (PD) was measured in vivo across the buccal mucosa of humans and experimental animals. Mean PD was -31 +/- 2 mV in humans, -34 +/- 2 mV in dogs, -39 +/- 2 mV in rabbits, and -18 +/- 1 mV in hamsters. The mechanisms responsible for this PD were explored in Ussing chambers using dog buccal mucosa. After equilibration, mean PD was -16 +/- 2 mV, short-circuit current (Isc) was 15 +/- 1 microA/cm2, and resistance was 1,090 +/- 100 omega.cm2, the latter indicating an electrically "tight" tissue. Fluxes of [14C]mannitol, a marker of paracellular permeability, varied directly with tissue conductance. The net fluxes of 22Na and 36Cl were +0.21 +/- 0.05 and -0.04 +/- 0.02 mueq/h.cm2, respectively, but only the Na+ flux differed significantly from zero. Isc was reduced by luminal amiloride, serosal ouabain, or by reducing luminal Na+ below 20 mM. This indicated that the Isc was determined primarily by active Na+ absorption and that Na+ traverses the apical membrane at least partly through amiloride-sensitive channels and exits across the basolateral membrane through Na+-K+-ATPase activity. We conclude that buccal mucosa is capable of active electrolyte transport and that this capacity contributes to generation of the buccal PD in vivo.


1966 ◽  
Vol 29 (3) ◽  
pp. 497-505 ◽  
Author(s):  
Arndt J. Duvall ◽  
Åke Flock ◽  
Jan Wersäll

From the apical end of the inner hair cell of the organ of Corti in the guinea pig cochlea protrude four to five rows of stereocilia shaped in a pattern not unlike the wings of a bird. In the area devoid of cuticular substance facing toward the tunnel of Corti lies a consistently present centriole. The ultrastructure of this centriole is similar to that of the basal body of the kinocilium located in the periphery of the sensory hair bundles in the vestibular and lateral line organ sensory cells and to that of the centrioles of other cells. The physiological implications of the anatomical orientation of this centriole are discussed in terms of directional sensitivity.


Sign in / Sign up

Export Citation Format

Share Document