Delayed K+ current and external K+ in single cardiac Purkinje cells

1989 ◽  
Vol 257 (6) ◽  
pp. C1086-C1092 ◽  
Author(s):  
F. Scamps ◽  
E. Carmeliet

The effect of external K+ on the delayed K+ current was investigated in rabbit single Purkinje cells. Whole cell voltage clamp and intracellular dialysis were used. At K+ concentrations less than 1 mM the kinetics of the delayed K+ current were not changed, but the conductance was markedly reduced. This effect was due to a direct change at an extracellular site and not due to secondary changes in intracellular Na+ or Ca2+ concentrations. A rise in intracellular Na+ or Ca2+ rather increased the delayed K+ current. The decrease in the delayed K+ current in low external K+ was absent when the experiments were done in Na+-free solution. It is concluded that external Na+ exerts an inhibitory effect on the conductance of the delayed K+ current.

1989 ◽  
Vol 256 (5) ◽  
pp. H1478-H1492 ◽  
Author(s):  
Y. Hirano ◽  
H. A. Fozzard ◽  
C. T. January

Two types of Ca2+ currents were recorded in single dialyzed canine cardiac Purkinje cells using a whole cell voltage clamp technique. T-type current was easily separated from L-type current, because its voltage dependence of inactivation and activation was more negative and it decayed rapidly. L-type current was available at more depolarized holding potentials, activated at more positive voltages, and decayed slowly. In 2 mM extracellular Ca2+ concentration [( Ca]o), the average peak T- and L-type current density was 1.70 and 2.87 pA/pF, respectively. T-type current was relatively insensitive to modification by Ca2+, nifedipine, Cd2+, BAY K 8644, or isoproterenol. T-type current was more sensitive to block by Ni2+ and amiloride. Replacement of Ca2+ by Ba2+ or Sr2+ did not increase T-type current. Changes in the Ca2+ or Ba2+ concentration caused parallel shifts in the voltage dependence of several kinetic parameters for L- and T-type current. In 2 mM [Ca]o, the V1/2 (Boltzmann fit) for inactivation of T-type current was -68 mV with a slope of 3.9, and for L-type current the V1/2 was -31 mV with a slope of 5.5. Recovery from inactivation of L- and T-type current was voltage dependent, and for similar conditions L-type current recovered from inactivation more rapidly than T-type current. These findings show that T- and L-type currents are large in cardiac Purkinje cells, and they can easily be separated by their voltage, kinetic, and pharmacological differences. Both may have important physiological roles.


2005 ◽  
Vol 289 (4) ◽  
pp. C946-C958 ◽  
Author(s):  
Dana Cucu ◽  
Jeannine Simaels ◽  
Jan Eggermont ◽  
Willy Van Driessche ◽  
Wolfgang Zeiske

Opposite effects of Ni2+ on Xenopus and rat ENaCs expressed in Xenopus oocytes. Am J Physiol Cell Physiol 289: C946–C958, 2005. First published June 8, 2005; .—The epithelial Na+ channel (ENaC) is modulated by various extracellular factors, including Na+, organic or inorganic cations, and serine proteases. To identify the effect of the divalent Ni2+ cation on ENaCs, we compared the Na+ permeability and amiloride kinetics of Xenopus ENaCs (xENaCs) and rat ENaCs (rENaCs) heterologously expressed in Xenopus oocytes. We found that the channel cloned from the kidney of the clawed toad Xenopus laevis [wild-type (WT) xENaC] was stimulated by external Ni2+, whereas the divalent cation inhibited the channel cloned from the rat colon (WT rENaC). The kinetics of amiloride binding were determined using noise analysis of blocker-induced fluctuation in current adapted for the transoocyte voltage-clamp method, and Na+ conductance was assessed using the dual electrode voltage-clamp (TEVC) technique. The inhibitory effect of Ni2+ on amiloride binding is not species dependent, because Ni2+ decreased the affinity (mainly reducing the association rate constant) of the blocker in both species in competition with Na+. Importantly, using the TEVC method, we found a prominent difference in channel conductance at hyperpolarizing voltage pulses. In WT xENaCs, the initial ohmic current response was stimulated by Ni2+, whereas the secondary voltage-activated current component remained unaffected. In WT rENaCs, only a voltage-dependent block by Ni2+ was obtained. To further study the origin of the xENaC stimulation by Ni2+, and based on the rationale of the well-known high affinity of Ni2+ for histidine residues, we designed α-subunit mutants of xENaCs by substituting histidines that were expressed in oocytes, together with WT β- and γ-subunits. Changing His215 to Asp in one putative amiloride-binding domain (WYRFHY) in the extracellular loop between Na+ channel membrane segments M1 and M2 had no influence on the stimulatory effect of Ni2+, and neither did complete deletion of this segment. Next, we mutated His416 flanked by His411 and Cys417, a unique site for possible heavy metal ion chelation, and, with this quality, most proximal (∼100 amino acids upstream of the second putative amiloride binding site at the pore entrance), was found localized at M2. Replacing His416 with arginine, aspartate, tyrosine, and alanine clearly affected amiloride binding in all cases, as well as Na+ conductance, as expressed in the xENaC current-voltage relationship, especially with regard to aspartate and tyrosine. However, similarly to those obtained with the WYRFHY stretch, none of these mutations could either abolish the stimulating effect of Ni2+ or reverse it to an inhibitory type.


1995 ◽  
Vol 74 (6) ◽  
pp. 2749-2753 ◽  
Author(s):  
P. Pedarzani ◽  
J. F. Storm

1. The effects of dopamine on the slow Ca(2+)-dependent K+ current (IAHP; AHP, afterhyperpolarization) and spike frequency adaptation were studied by whole cell voltage-clamp and sharp microelectrode current-clamp recordings in rat CA1 pyramidal neurons in rat hippocampal slices. 2. Dopamine suppressed IAHP in a dose-dependent manner, under whole cell voltage-clamp conditions. Similarly, under current-clamp conditions, dopamine inhibited spike frequency adaptation and suppressed the slow afterhyperpolarization. 3. The effect of dopamine on IAHP was mimicked by a D1 receptor agonist and blocked by dopamine receptor antagonists only in a minority of the cells. 4. Dopamine suppressed IAHP after blocking or desensitizing the beta-adrenergic receptors and, hence, did not act by cross-reacting with this receptor type. 5. The effects of dopamine on IAHP and spike frequency adaptation were suppressed by blocking the adenosine 3',5'-cyclic monophosphate (cAMP)-dependent kinase (PKA) with Rp-cAMPS and, hence, are probably mediated by the activation of this kinase. 6. We conclude that dopamine increases hippocampal neuron excitability, like other monoamine neurotransmitters, by suppressing IAHP and spike frequency adaptation, via cAMP and protein kinase A. The receptor type mediating this effect of dopamine remains to be defined.


1990 ◽  
Vol 259 (6) ◽  
pp. C854-C861 ◽  
Author(s):  
C. Chen ◽  
J. Zhang ◽  
J. D. Vincent ◽  
J. M. Israel

To study the modulatory effects of somatostatin on membrane K+ currents, whole cell voltage-clamp recordings were performed on identified rat somatotrophs in primary culture. In the presence of Co2+ (2 mM) and tetrodotoxin (1 microM) in the bath solution to block Ca2+ and Na+ inward currents, two types of voltage-activated K+ currents were identified on the basis of their kinetics and pharmacology. First, a delayed rectifier K+ current (IK) had a threshold of -20 mV, did not decay during voltage steps lasting 300 ms, and was markedly attenuated by extracellular application of tetraethylammonium (TEA, 10 mM). Second, a transient outward K+ current (IA) was activated at -40 mV (from a holding potential of -80 mV) and persisted despite the presence of TEA. This IA was blocked by 4-aminopyridine (2 mM). Somatostatin (10 nM) increased IK by 75% and IA by 45% without obvious effects on steady-state voltage dependency of activation or inactivation, and these effects were reversible. This increase in K+ currents may contribute in part to the inhibitory effect of somatostatin on growth hormone release.


1994 ◽  
Vol 72 (3) ◽  
pp. 1240-1249 ◽  
Author(s):  
S. Sugita ◽  
D. A. Baxter ◽  
J. H. Byrne

1. In the pleural mechanoafferent sensory neurons of Aplysia, serotonin (5-HT)-induced spike broadening consists of at least two components: a cAMP and protein kinase A (PKA)-dependent, rapidly developing component and a protein kinase C (PKC)-dependent, slowly developing component. Voltage-clamp experiments were conducted to identify currents that are modulated by PKC and thus may contribute to the slowly developing component of 5-HT-induced spike broadening. 2. We compared the effects of phorbol esters, activators of PKC, on membrane currents with those of 5-HT. Bath application of 5-HT had complex modulatory effects on currents elicited by voltage-clamp pulses to potentials > 0 mV. The kinetics of both activation and inactivation of the membrane currents were slowed by 5-HT. This led to a decrease in an outward current at the beginning of the voltage-clamp pulse and an increase at the end of the pulse. Previous work has shown that these effects represent, in part, the modulation of a large, voltage-dependent K+ current (IK,V) by 5-HT. 3. Active phorbol esters mimicked some of the actions of 5-HT on membrane currents in that they slowed activation and inactivation kinetics of current responses to voltage-clamp pulses more positive than 0 mV. This led to a decrease in an outward current at the beginning of the pulse and an increase at the end of the pulse. Because inactive phorbols did not mimic the actions of 5-HT, the effects of active phorbol esters appeared to be PKC specific. In addition, preexposure of the sensory neurons to active phorbol esters appeared to occlude the modulatory actions of 5-HT on IK,V. Thus it is likely that modulation of IK,V by 5-HT is mediated, at lease in part, by PKC. 4. To further characterize which currents were modulated by PKC, low concentrations of tetraethylammonium (TEA, 2 mM) were used to block Ca(2+)-activated K+ current (IK,Ca). Low TEA partially blocked the phorbol ester-induced increase of the outward current at the end of voltage-clamp pulses. These results agreed with previous reports that activation of PKC enhanced a fast component of IK,Ca in these sensory neurons. Such an enhancement would lead to an increase in outward current that should be blocked by low TEA. Low TEA, however, did not affect phorbol ester-induced decrease of the outward current at the beginning of pulse, where the predominant current is IK,V, which is less sensitive to TEA.(ABSTRACT TRUNCATED AT 400 WORDS)


1983 ◽  
Vol 220 (1219) ◽  
pp. 265-271 ◽  

The culture of rat submandibular ganglion cells is described. The neurons can be distinguished from the non-neuronal cells in the cultures by their morphology. Recording with whole-cell voltage-clamp techniques indicates that the neurons have resting potentials of about – 55 mV and that the kinetics of the ionic channels opened by locally perfused acetylcholine (ACh) are very similar to those previously observed in adult submandibular ganglion neurons. The major differences observed are that the recorded cell input impedances are much higher than those recorded with microelectrodes from adult neurons and that the sensitivity of the cultured neurons to ACh is much less than that of the adult neurons. Whether the latter is due to changed receptor properties or to the presence of fewer receptors is not known.


1992 ◽  
Vol 262 (3) ◽  
pp. C598-C606 ◽  
Author(s):  
S. J. Quinn ◽  
U. Brauneis ◽  
D. L. Tillotson ◽  
M. C. Cornwall ◽  
G. H. Williams

Rat and bovine adrenal zona glomerulosa (ZG) cells possess a low-threshold, voltage-dependent Ca2+ current that was characterized using whole cell voltage clamp techniques. Activation of this current is observed at membrane potentials above -80 mV with maximal peak Ca2+ current elicited near -30 mV. Inactivation of the Ca2+ current was half-maximal between -74 and -58 mV, depending on the external Ca2+ concentration and was nearly complete at -40 mV. The voltage dependency of the current indicates that a calcium current could be sustained at membrane potentials between -80 and -40 mV and thereby elevates cytosolic calcium (Cai) levels. Under basal conditions, Cai is stable in single rat ZG cells, whereas more than half of the bovine ZG cells produce repeated Cai transients. These Cai transients, which are blocked by removal of external Ca2+ or addition of Ni2+, are likely due to repetitive electrical activity in bovine ZG cells. Cai responses can be elicited by small increases in external K+ concentration (5-10 mM) in both rat and bovine ZG cells, indicating the opening of low-threshold Ca2+ channels. However, these Cai changes remain robust at high external K+ concentrations (20-40 mM). In experiments combining Cai measurements and whole cell voltage clamp, a steep dependence of Cai on membrane potential was revealed beginning at depolarizing voltages near a holding membrane potential of -80 mV. A maximal increase in Cai occurred near -30 mV (equivalent to an external K+ concentration of 40 mM), a membrane voltage at which sustained current through low-threshold Ca2+ channels should be negligible. These data raise the possibility of additional voltage-dependent pathways for Ca2+ influx.


Sign in / Sign up

Export Citation Format

Share Document