Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle

1994 ◽  
Vol 267 (6) ◽  
pp. C1723-C1728 ◽  
Author(s):  
V. Smerdu ◽  
I. Karsch-Mizrachi ◽  
M. Campione ◽  
L. Leinwand ◽  
S. Schiaffino

Several members of the sarcomeric myosin heavy chain (MHC) gene family have been mapped in the human genome but many of them have not yet been identified. In this study we report the identification of two human skeletal MHC genes as fast IIa and IIx MHC based on pattern of expression and sequence homology with the corresponding rat genes in the 3'-translated and untranslated regions. The distribution of these two gene products as well as that of the beta/slow MHC gene was analyzed in human skeletal muscles by in situ hybridization. The distribution of beta/slow, IIa, and IIx MHC transcripts defines three major muscle fiber types expressing a single MHC mRNA, i.e., either beta/slow, IIa, or IIx MHC mRNA, and two populations of hybrid fibers coexpressing beta/slow with IIa or IIa with IIx MHC mRNA. Fiber typing by ATPase histochemistry shows that IIa MHC transcripts are more abundant in histochemical type IIa fibers, whereas IIx MHC transcripts are more abundant in histochemical type IIb fibers.

2008 ◽  
Vol 56 (10) ◽  
pp. 929-950 ◽  
Author(s):  
Hannah S. Rhee ◽  
Joseph F.Y. Hoh

We studied myosin heavy chain (MyHC) expression and fiber type distribution in laryngeal muscles in the rabbit, cat, and baboon using immunohistochemistry with highly MyHC-specific antibodies. Two types of variation in MyHC expression were found: between muscles of different function within species and within specific muscles between species. Within species, thyroarytenoid (Ta), an adductor, had faster MyHCs and fiber type profiles than the abductor, posterior cricoarytenoid (PCA), which expressed faster MyHCs than the vocal fold tensor, cricothyroid (CT). Between species, laryngeal muscles generally expressed faster MyHCs in small animals than in larger ones: extraocular (EO) MyHC was expressed in the Ta and PCA of the rabbit but not in the cat and baboon, whereas 2B MyHC was expressed in these muscles of the cat but not of the baboon. The CT expressed only MyHC isoforms and fiber types found in the limb muscles of the same species. These results are discussed in light of the hypothesis that the between-species variations in laryngeal muscle fiber types are evolutionary adaptations in response to changes in body mass and respiratory frequency. Within-species variations in fiber types ensure that protective closure of the glottis is always faster than movements regulating airflow during respiration.


2001 ◽  
Vol 264 (3) ◽  
pp. 284-293 ◽  
Author(s):  
Anastasio Argüello ◽  
Juan-Luis López-Fernández ◽  
José-Luis L. Rivero

2018 ◽  
Vol 44 (2) ◽  
pp. 679-691 ◽  
Author(s):  
Shigeharu Kinoshita ◽  
Saltuk Bugrahan Ceyhun ◽  
Asaduzzamann Md ◽  
Bhuiyan Sharmin Siddique ◽  
Dadasaheb B. Akolkar ◽  
...  

2003 ◽  
Vol 51 (1) ◽  
pp. 113-119 ◽  
Author(s):  
J.A.M. Korfage ◽  
T.M.G.J. Van Eijden

In this study we compared the immunohistochemically quantified fiber type area with the myosin heavy chain (MyHC) contents of a bundle of fibers from a human masticatory muscle. The total cross-sectional areas were determined immunohistochemically for the three major fiber types (I, IIA, and IIX) in bundles of fibers ( n = 42) taken from the anterior and posterior belly of the human digastric muscle ( n = 7). The relative MyHC contents of the same fiber bundles were determined electrophoretically (MyHC-I, -IIA, and -IIX; anterior, 32%, 35%, and 33%; posterior, 39%, 42%, and 19%) and compared with the immunohistochemical data (MyHC-I, -IIA, and -IIX; anterior, 32%, 31%, and 37%; posterior, 39%, 45%, and 15%). No significant differences were seen in the mean fiber type distribution between the two techniques; the correlation coefficient ranged from 0.71 to 0.96. The correlation coefficient was higher for MyHC type I and MyHC type IIX than for MyHC type IIA. The MyHC contents of single fibers taken from the posterior belly indicated that many fibers in this belly co-express MyHC-IIA and MyHC-IIX. Despite the presence of these hybrid fibers, the correspondence between both methods was relatively large.


2001 ◽  
Vol 90 (3) ◽  
pp. 770-776 ◽  
Author(s):  
K. Vijayan ◽  
J. L. Thompson ◽  
K. M. Norenberg ◽  
R. H. Fitts ◽  
D. A. Riley

Slow oxidative (SO) fibers of the adductor longus (AL) were predominantly damaged during voluntary reloading of hindlimb unloaded (HU) rats and appeared explainable by preferential SO fiber recruitment. The present study assessed damage after eliminating the variable of voluntary recruitment by tetanically activating all fibers in situ through the motor nerve while applying eccentric (lengthening) or isometric contractions. Muscles were aldehyde fixed and resin embedded, and semithin sections were cut. Sarcomere lesions were quantified in toluidine blue-stained sections. Fibers were typed in serial sections immunostained with antifast myosin and antitotal myosin (which highlights slow fibers). Both isometric and eccentric paradigms caused fatigue. Lesions occurred only in eccentrically contracted control and HU muscles. Fatigue did not cause lesions. HU increased damage because lesioned- fiber percentages within fiber types and lesion sizes were greater than control. Fast oxidative glycolytic (FOG) fibers were predominantly damaged. In no case did damaged SO fibers predominate. Thus, when FOG, SO, and hybrid fibers are actively lengthened in chronically unloaded muscle, FOG fibers are intrinsically more susceptible to damage than SO fibers. Damaged hybrid-fiber proportions ranged between these extremes.


2001 ◽  
Vol 280 (3) ◽  
pp. C637-C645 ◽  
Author(s):  
David L. Allen ◽  
Brooke C. Harrison ◽  
Carol Sartorius ◽  
William C. Byrnes ◽  
Leslie A. Leinwand

The fast skeletal IIb gene is the source of most myosin heavy chain (MyHC) in adult mouse skeletal muscle. We have examined the effects of a null mutation in the IIb MyHC gene on the growth and morphology of mouse skeletal muscle. Loss in muscle mass of several head and hindlimb muscles correlated with amounts of IIb MyHC expressed in that muscle in wild types. Decreased mass was accompanied by decreases in mean fiber number, and immunological and ultrastructural studies revealed fiber pathology. However, mean cross-sectional area was increased in all fiber types, suggesting compensatory hypertrophy. Loss of muscle and body mass was not attributable to impaired chewing, and decreased food intake as a softer diet did not prevent the decrease in body mass. Thus loss of the major MyHC isoform produces fiber loss and fiber pathology reminiscent of muscle disease.


1989 ◽  
Vol 122 (1) ◽  
pp. 193-200 ◽  
Author(s):  
N. K. Green ◽  
J. A. Franklyn ◽  
J. A. O. Ahlquist ◽  
M. D. Gammage ◽  
M. C. Sheppard

ABSTRACT The effect of tri-iodothyronine (T3) treatment on myocardial levels of α and β myosin heavy chain (MHC) mRNAs in the rat was defined in vivo and in vitro. Dose–response experiments were performed in intact hypothyroid and euthyroid rats; in addition, studies in vitro examined the effect of T3 on MHC mRNAs in neonatal cardiac myocytes in primary culture. Specific α and β MHC mRNAs were determined by Northern blot and dot hybridization to oligonucleotide probes complementary to the 3′ untranslated regions of the MHC genes. An increase in myocardial β MHC mRNA was demonstrated in hypothyroidism, accompanied by a reduction in α MHC mRNA. Marked differences in the sensitivity of α and β MHC mRNAs to T3 replacement were found; a dose-dependent increase in α mRNA was evident at 6 h after T3 treatment, in the absence of consistent effects on β mRNA, whereas 72 h after T3 replacement was commenced, stimulatory effects of T3 on α MHC mRNA, evident at all doses, were accompanied by a dose-dependent inhibition of β MHC mRNA. No effect of thyroid status on actin mRNA was found, indicating the specificity of MHC gene regulation. T3 treatment of cardiac myocytes in vitro exerted similar actions on MHC mRNAs to those found in vivo, with a more marked influence on α than β MHC mRNA. These studies of the action of T3 in vivo and in vitro have thus demonstrated specific effects of T3 on pretranslational regulation of the α and β MHC genes, influences which differ not only in terms of stimulation or inhibition, but also in magnitude of effect. Journal of Endocrinology (1989) 122, 193–200


2001 ◽  
Vol 204 (12) ◽  
pp. 2097-2101 ◽  
Author(s):  
Pierre-Yves Rescan ◽  
Bertrand Collet ◽  
Cecile Ralliere ◽  
Chantal Cauty ◽  
Jean-Marie Delalande ◽  
...  

SUMMARY The axial muscle of most teleost species consists of a deep bulk of fast-contracting white fibres and a superficial strip of slow-contracting red fibres. To investigate the embryological development of fast and slow muscle in trout embryos, we carried out single and double in situ hybridisation with fast and slow myosin heavy chain (MyHC)-isoform-specific riboprobes. This showed that the slow-MyHC-positive cells originate in a region of the somite close to the notochord. As the somite matures in a rostrocaudal progression, the slow-MyHC-positive cells appear to migrate radially away from the notochord to the lateral surface of the myotome, where they form the superficial strip of slow muscle. Surprisingly, the expression pattern of the fast MyHC showed that the differentiation of fast muscle commences in the medial domain of the somite before the differentiation and migration of the slow muscle precursors. Later, as the differentiation of fast muscle progressively spreads from the inside to the outside of the myotome, slow-MyHC-expressing cells become visible medially. Our observations that the initial differentiation of fast muscle takes place in proximity to axial structures and occurs before the differentiation and migration of slow muscle progenitors are not in accord with the pattern of muscle formation in teleosts previously described in the zebrafish Danio rerio, which is often used as the model organism in fishes.


Sign in / Sign up

Export Citation Format

Share Document