Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells

1995 ◽  
Vol 268 (2) ◽  
pp. C356-C365 ◽  
Author(s):  
A. P. Moreno ◽  
J. G. Laing ◽  
E. C. Beyer ◽  
D. C. Spray

We have evaluated the voltage dependence and unitary conductance of gap junctional channels that were recorded in a clone isolated from the hepatoma cell line SKHep1. In this clonal population (designated SKHep1A), Northern blots, immunoprecipitation, and immunohistochemical staining demonstrated the expression of connexin (Cx) 45; no other gap junction protein was identified by these techniques, although weak hybridization with Cx40 was detected. Macroscopic junctional conductance (gj) in these cells was low, averaging 1.3 nS, and was steeply voltage dependent. Parameters of voltage sensitivity were as follows: voltage at which voltage-sensitive conductance is reduced by 50%, 13.4 mV; steepness of relation, 0.115 (corresponding to 2.7 gating charges), and voltage-insensitive fraction of residual to total conductance approximately 0.06. Unitary conductance (gamma j) of these junctional channels averaged 32 +/- 8 pS; although gamma j was independent of transjunctional voltage (Vj), at high Vj values (> 50 mV), smaller conductance values were also detected. Open probabilities of the 30-pS channels at various Vj values closely matched the predicted voltage-dependent component of macroscopic gj, the residual conductance at high Vj might be attributable to the smaller conductance events. The voltage dependence of human Cx45 gap junction channels is as steep as that seen for channels formed by Xenopus Cx38 and is much steeper than that previously reported for channels formed of the highly homologous chick Cx45 and for other mammalian connexins expressed either endogenously or exogenously.

2001 ◽  
Vol 88 (7) ◽  
pp. 666-673 ◽  
Author(s):  
Justus M. B. Anumonwo ◽  
Steven M. Taffet ◽  
Hong Gu ◽  
Marc Chanson ◽  
Alonso P. Moreno ◽  
...  

1991 ◽  
Vol 59 (4) ◽  
pp. 920-925 ◽  
Author(s):  
A.P. Moreno ◽  
A.C. de Carvalho ◽  
V. Verselis ◽  
B. Eghbali ◽  
D.C. Spray

Development ◽  
1999 ◽  
Vol 126 (21) ◽  
pp. 4703-4714 ◽  
Author(s):  
M. Levin ◽  
M. Mercola

Invariant patterning of left-right asymmetry during embryogenesis depends upon a cascade of inductive and repressive interactions between asymmetrically expressed genes. Different cascades of asymmetric genes distinguish the left and right sides of the embryo and are maintained by a midline barrier. As such, the left and right sides of an embryo can be viewed as distinct and autonomous fields. Here we describe a series of experiments that indicate that the initiation of these programs requires communication between the two sides of the blastoderm. When deprived of either the left or the right lateral halves of the blastoderm, embryos are incapable of patterning normal left-right gene expression at Hensen's node. Not only are both flanks required, suggesting that there is no single signaling source for LR pattern, but the blastoderm must be intact. These results are consistent with our previously proposed model in which the orientation of LR asymmetry in the frog, Xenopus laevis, depends on large-scale partitioning of LR determinants through intercellular gap junction channels (M. Levin and M. Mercola (1998) Developmental Biology 203, 90–105). Here we evaluate whether gap junctional communication is required for the LR asymmetry in the chick, where it is possible to order early events relative to the well-characterized left and right hierarchies of gene expression. Treatment of cultured chick embryos with lindane, which diminishes gap junctional communication, frequently unbiased normal LR asymmetry of Shh and Nodal gene expression, causing the normally left-sided program to be recapitulated symmetrically on the right side of the embryo. A survey of early expression of connexin mRNAs revealed that Cx43 is present throughout the blastoderm at Hamburger-Hamilton stage 2–3, prior to known asymmetric gene expression. Application of antisense oligodeoxynucleotides or blocking antibody to cultured embryos also resulted in bilateral expression of Shh and Nodal transcripts. Importantly, the node and primitive streak at these stages lack Cx43 mRNA. This result, together with the requirement for an intact blastoderm, suggests that the path of communication through gap junction channels circumvents the node and streak. We propose that left-right information is transferred unidirectionally throughout the epiblast by gap junction channels in order to pattern left-sided Shh expression at Hensen's node.


1995 ◽  
Vol 73 (6) ◽  
pp. 2404-2412 ◽  
Author(s):  
P. Legendre ◽  
H. Korn

1. The kinetics and mechanisms underlying the voltage dependence of inhibitory postsynaptic currents (IPSCs) recorded in the Mauthner cell (M cell) were investigated in the isolated medulla of 52-h-old zebrafish larvae, with the use of whole cell and outside-out patch-clamp recordings. 2. Spontaneous miniature IPSCs (mIPSCs) were recorded in the presence of 10(-6) M tetrodotoxin (TTX), 10 mM MgCl2, and 0.1 mM [CaCl2]o. Depolarizing the cell from -50 to +50 mV did not evoke any significant change in the distribution of mIPSC amplitudes, whereas synaptic currents were prolonged at positive voltages. The average decay time constant was increased twofold at +50 mV. 3. The voltage dependence of the kinetics of glycine-activated channels was first investigated during whole cell recording experiments. Currents evoked by voltage steps in the presence of glycine (50 microM) were compared with those obtained without glycine. The increase in chloride conductance (gCl-) evoked by glycine was time and voltage dependent. Inactivation and reactivation of the chloride current were observed during voltage pulses from 0 to -50 mV and from -50 to 0 mV, respectively, and they occurred with similar time constants (2-3 s). During glycine application, voltage-ramp analysis revealed a shift in the reversal potential (ECl-) occurring at all [Cl-]i tested. 4. The basis of the voltage sensitivity of glycine-evoked gCl- was first analyzed by measuring the relative changes in the total open probability (NPo) of glycine-activated channels with voltage.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 115 (5) ◽  
pp. 1357-1374 ◽  
Author(s):  
L S Musil ◽  
D A Goodenough

We previously demonstrated that the gap junction protein connexin43 is translated as a 42-kD protein (connexin43-NP) that is efficiently phosphorylated to a 46,000-Mr species (connexin43-P2) in gap junctional communication-competent, but not in communication-deficient, cells. In this study, we used a combination of metabolic radiolabeling and immunoprecipitation to investigate the assembly of connexin43 into gap junctions and the relationship of this event to phosphorylation of connexin43. Examination of the detergent solubility of connexin43 in communication-competent NRK cells revealed that processing of connexin43 to the P2 form was accompanied by acquisition of resistance to solubilization in 1% Triton X-100. Immunohistochemical localization of connexin43 in Triton-extracted NRK cells demonstrated that connexin43-P2 (Triton-insoluble) was concentrated in gap junctional plaques, whereas connexin43-NP (Triton-soluble) was predominantly intracellular. Using either a 20 degrees C intracellular transport block or cell-surface protein biotinylation, we determined that connexin43 was transported to the plasma membrane in the Triton-soluble connexin43-NP form. Cell-surface biotinylated connexin43-NP was processed to Triton-insoluble connexin43-P2 at 37 degrees C. Connexin43-NP was also transported to the plasma membrane in communication defective, gap junction-deficient S180 and L929 cells but was not processed to Triton-insoluble connexin43-P2. Taken together, these results demonstrate that gap junction assembly is regulated after arrival of connexin43 at the plasma membrane and is temporally associated with acquisition of insolubility in Triton X-100 and phosphorylation to the connexin43-P2 form.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261960
Author(s):  
Ana Laura López-Serrano ◽  
Rodrigo Zamora-Cárdenas ◽  
Iván A. Aréchiga-Figueroa ◽  
Pedro D. Salazar-Fajardo ◽  
Tania Ferrer ◽  
...  

Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the ‘relaxation’ property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.


Sign in / Sign up

Export Citation Format

Share Document