Voltage dependence of conductance changes evoked by glycine release in the zebrafish brain

1995 ◽  
Vol 73 (6) ◽  
pp. 2404-2412 ◽  
Author(s):  
P. Legendre ◽  
H. Korn

1. The kinetics and mechanisms underlying the voltage dependence of inhibitory postsynaptic currents (IPSCs) recorded in the Mauthner cell (M cell) were investigated in the isolated medulla of 52-h-old zebrafish larvae, with the use of whole cell and outside-out patch-clamp recordings. 2. Spontaneous miniature IPSCs (mIPSCs) were recorded in the presence of 10(-6) M tetrodotoxin (TTX), 10 mM MgCl2, and 0.1 mM [CaCl2]o. Depolarizing the cell from -50 to +50 mV did not evoke any significant change in the distribution of mIPSC amplitudes, whereas synaptic currents were prolonged at positive voltages. The average decay time constant was increased twofold at +50 mV. 3. The voltage dependence of the kinetics of glycine-activated channels was first investigated during whole cell recording experiments. Currents evoked by voltage steps in the presence of glycine (50 microM) were compared with those obtained without glycine. The increase in chloride conductance (gCl-) evoked by glycine was time and voltage dependent. Inactivation and reactivation of the chloride current were observed during voltage pulses from 0 to -50 mV and from -50 to 0 mV, respectively, and they occurred with similar time constants (2-3 s). During glycine application, voltage-ramp analysis revealed a shift in the reversal potential (ECl-) occurring at all [Cl-]i tested. 4. The basis of the voltage sensitivity of glycine-evoked gCl- was first analyzed by measuring the relative changes in the total open probability (NPo) of glycine-activated channels with voltage.(ABSTRACT TRUNCATED AT 250 WORDS)

1993 ◽  
Vol 102 (4) ◽  
pp. 729-760 ◽  
Author(s):  
A Kapus ◽  
R Romanek ◽  
A Y Qu ◽  
O D Rotstein ◽  
S Grinstein

Phagocytes generate large amounts of metabolic acid during activation. Therefore, the presence of a conductive pathway capable of H+ extrusion has been suggested (Henderson, L. M., J. B. Chappell, and O. T. G. Jones. 1987. Biochemical Journal. 246:325-329). In this report, electrophysiological and fluorimetric methods were used to probe the existence of a H+ conductance in murine peritoneal macrophages. In suspended cells, recovery of the cytosolic pH (pHi) from an acid-load in Na+ and HCO3(-)-free medium was detectable in depolarizing but not in hyperpolarizing media. The rate of alkalinization was potentiated by the rheogenic ionophore valinomycin. These findings are consistent with the existence of a conductive H+ (equivalent) pathway. This notion was confirmed by patch-clamping and fluorescence ratio measurements of single adherent cells. When voltage was clamped in the whole-cell configuration, depolarizing pulses induced a sizable outward current which was accompanied by cytosolic alkalinization. Several lines of evidence indicate that H+ (equivalents) carry this current: (a) the conductance was unaffected by substitution of the major ionic constituents of the intra-and/or extracellular media, (b) the reversal potential of the tail currents approached the H+ equilibrium potential; and (c) the voltage-induced currents and pHi changes were both Zn2+ sensitive and had similar time course and potential dependence. The peak whole-cell current displayed marked outward rectification and was exquisitely H+ selective. At constant voltage, the H+ permeability was increased by lowering pHi but was inhibited by extracellular acidification. Together with the voltage dependence of the conductance, these features ensure that H+ extrusion can occur during activation, while potentially deleterious acid uptake is precluded. The properties of the conductance appear ideally suited for pHi regulation during phagocyte activation, because these cells undergo a sustained depolarization and an incipient acidification when stimulated. Comparison of the magnitude of the current with the amount of metabolic acid generated during macrophage activation indicates that the conductance is sufficiently large to contribute to the H+ extrusion required for maintenance of pHi.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261960
Author(s):  
Ana Laura López-Serrano ◽  
Rodrigo Zamora-Cárdenas ◽  
Iván A. Aréchiga-Figueroa ◽  
Pedro D. Salazar-Fajardo ◽  
Tania Ferrer ◽  
...  

Inhibitory regulation of the heart is determined by both cholinergic M2 receptors (M2R) and adenosine A1 receptors (A1R) that activate the same signaling pathway, the ACh-gated inward rectifier K+ (KACh) channels via Gi/o proteins. Previously, we have shown that the agonist-specific voltage sensitivity of M2R underlies several voltage-dependent features of IKACh, including the ‘relaxation’ property, which is characterized by a gradual increase or decrease of the current when cardiomyocytes are stepped to hyperpolarized or depolarized voltages, respectively. However, it is unknown whether membrane potential also affects A1R and how this could impact IKACh. Upon recording whole-cell currents of guinea-pig cardiomyocytes, we found that stimulation of the A1R-Gi/o-IKACh pathway with adenosine only caused a very slight voltage dependence in concentration-response relationships (~1.2-fold EC50 increase with depolarization) that was not manifested in the relative affinity, as estimated by the current deactivation kinetics (τ = 4074 ± 214 ms at -100 mV and τ = 4331 ± 341 ms at +30 mV; P = 0.31). Moreover, IKACh did not exhibit relaxation. Contrarily, activation of the M2R-Gi/o-IKACh pathway with acetylcholine induced the typical relaxation of the current, which correlated with the clear voltage-dependent effect observed in the concentration-response curves (~2.8-fold EC50 increase with depolarization) and in the IKACh deactivation kinetics (τ = 1762 ± 119 ms at -100 mV and τ = 1503 ± 160 ms at +30 mV; P = 0.01). Our findings further substantiate the hypothesis of the agonist-specific voltage dependence of GPCRs and that the IKACh relaxation is consequence of this property.


2007 ◽  
Vol 293 (1) ◽  
pp. F236-F244 ◽  
Author(s):  
Ling Yu ◽  
Douglas C. Eaton ◽  
My N. Helms

To better understand how renal Na+ reabsorption is altered by heavy metal poisoning, we examined the effects of several divalent heavy metal ions (Zn2+, Ni2+, Cu2+, Pb2+, Cd2+, and Hg2+) on the activity of single epithelial Na+ channels (ENaC) in a renal epithelial cell line (A6). None of the cations changed the single-channel conductance. However, ENaC activity [measured as the number of channels ( N) × open probability ( Po)] was decreased by Cd2+ and Hg2+ and increased by Cu2+, Zn2+, and Ni2+ but was not changed by Pb2+. Of the cations that induced an increase in Na+ channel function, Zn2+ increased N, Ni2+ increased Po, and Cu2+ increased both. The cysteine modification reagent [2-(trimethylammonium)ethyl]methanethiosulfonate bromide also increased N, whereas diethylpyrocarbonate, which covalently modifies histidine residues, affected neither Po nor N. Cu2+ increased N and stimulated Po by reducing Na+ self-inhibition. Furthermore, we observed that ENaC activity is slightly voltage dependent and that the voltage dependence of ENaC is insensitive to extracellular Na+ concentration; however, apical application of Ni2+ or diethylpyrocarbonate reduced the channel voltage dependence. Thus the voltage sensor of Xenopus ENaC is different from that of typical voltage-gated channels, since voltage appears to be sensed by histidine residues in the extracellular loops of ENaC, rather than by charged amino acids in a transmembrane domain.


1995 ◽  
Vol 106 (4) ◽  
pp. 641-658 ◽  
Author(s):  
M E O'Leary ◽  
L Q Chen ◽  
R G Kallen ◽  
R Horn

A pair of tyrosine residues, located on the cytoplasmic linker between the third and fourth domains of human heart sodium channels, plays a critical role in the kinetics and voltage dependence of inactivation. Substitution of these residues by glutamine (Y1494Y1495/QQ), but not phenylalanine, nearly eliminates the voltage dependence of the inactivation time constant measured from the decay of macroscopic current after a depolarization. The voltage dependence of steady state inactivation and recovery from inactivation is also decreased in YY/QQ channels. A characteristic feature of the coupling between activation and inactivation in sodium channels is a delay in development of inactivation after a depolarization. Such a delay is seen in wild-type but is abbreviated in YY/QQ channels at -30 mV. The macroscopic kinetics of activation are faster and less voltage dependent in the mutant at voltages more negative than -20 mV. Deactivation kinetics, by contrast, are not significantly different between mutant and wild-type channels at voltages more negative than -70 mV. Single-channel measurements show that the latencies for a channel to open after a depolarization are shorter and less voltage dependent in YY/QQ than in wild-type channels; however the peak open probability is not significantly affected in YY/QQ channels. These data demonstrate that rate constants involved in both activation and inactivation are altered in YY/QQ channels. These tyrosines are required for a normal coupling between activation voltage sensors and the inactivation gate. This coupling insures that the macroscopic inactivation rate is slow at negative voltages and accelerated at more positive voltages. Disruption of the coupling in YY/QQ alters the microscopic rates of both activation and inactivation.


1994 ◽  
Vol 71 (1) ◽  
pp. 119-128 ◽  
Author(s):  
D. A. Bayliss ◽  
F. Viana ◽  
M. C. Bellingham ◽  
A. J. Berger

1. Single-electrode voltage clamp recordings in a rat brain stem slice preparation were used to determine the characteristics and postnatal development of a hyperpolarization-activated inward current (Ih) in hypoglossal motoneurons (HMs). 2. In young adult HMs (> P21), a noninactivating, time- and voltage-dependent inward current was evident during hyperpolarizing voltage steps to membrane potentials negative to approximately -65 mV from depolarized holding potentials [Vh = -56.2 +/- 1.0 (SE) mV]. The averaged reversal potential (Erev) of the inward current, estimated using an extrapolation procedure, was -38.8 +/- 2.9 mV (n = 5), suggesting that a mixed cationic current underlies inward rectification in HMs. 3. The voltage dependence of Ih activation was determined from tail current relaxations that followed a family of voltage steps to different membrane potentials. Normalized tail current amplitudes were well-fitted with a single Boltzman function with a half-activation at -79.8 +/- 0.7 mV and slope factor = 5.3 +/- 0.3 (n = 8). 4. Time constants of Ih activation and deactivation were voltage-dependent. Activation proceeded more quickly with larger hyperpolarizing voltage steps; time constants averaged 389, 181, and 134 ms at -69, -82, and -95 mV, respectively (n = 6). Ih deactivated during depolarizing voltage steps from hyperpolarized holding potentials. Deactivation was faster with larger depolarizing steps; time constants averaged 321, 215, and 107 ms at -80, -71, and -62 mV, respectively (n = 4). 5. Ih was sensitive to extracellular cesium but relatively insensitive to extracellular barium. The current amplitude near half-activation (approximately -84 mV) was almost completely blocked (to 11% of control) by Cs+ (3 mM, n = 3) but was reduced to only 85 and 60% in 0.5 (n = 2) and 2 mM Ba2+ (n = 3), respectively. 6. There was a marked increase in the amplitude of Ih during postnatal development of HMs. Measured near half-activation, Ih was approximately 10-fold larger in adult (> or = P21; n = 20) than in neonatal HMs (< or = P8; n = 7). Input conductance (GN) was only threefold higher in the same sample of HMs. There were no apparent differences in the voltage dependence or Erev of Ih between neonatal and older HMs. These results suggest that the increased amplitude of Ih results from an increase in Ih current density.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 76 (4) ◽  
pp. 2290-2306 ◽  
Author(s):  
W. J. Song ◽  
D. J. Surmeier

1. Voltage-dependent facilitation of Ca2+ channels was studied in acutely isolated adult rat neostriatal neurons. Particular attention was paid to the facilitation of L-type channels. 2. In the absence of neuromodulators, the current-voltage relationship for whole cell Ba2+ currents was enhanced by a prepulse to +100 mV. The median enhancement at -20 mV was nearly 60%. The voltage dependence and kinetics of the processes underlying the facilitation were similar to those reported in other neurons. N-, P-, Q-, and L-type currents contributed to the observed facilitation. 3. Voltage-dependent facilitation of L-type currents was studied by subtracting nifedipine-insensitive currents from control currents. Although the kinetics were similar to those of the whole cell currents, the half-activation voltage for facilitation of L-type currents [half-activation voltage (Vh) = -0.6 mV, slope factors (Vc) = 11.8 mV, [n = 5] was significantly less depolarized than that of the pooled currents (Vh = 47.3 mV, Vc = 12.3 mV, n = 7). 4. Repetitive depolarization with spikelike waveforms was also able to induce facilitation of L-type currents, suggesting that facilitation was not simply a consequence of a modal shift in gating like that induced by Bay K 8644. 6. Combined whole cell recording and single-cell reverse transcription-polymerase chain reaction amplification revealed that neostriatal medium spiny neurons expressed detectable levels of either class C or class D L-type channel alpha 1, subunit mRNA. Both neurons expressing class C L-type channels and neurons expressing class D L-type channels exhibited voltage-dependent facilitation.


2009 ◽  
Vol 133 (5) ◽  
pp. 525-546 ◽  
Author(s):  
Nathaniel T. Blair ◽  
J. Stefan Kaczmarek ◽  
David E. Clapham

TRPC5 is a calcium (Ca2+)-permeable nonselective cation channel expressed in several brain regions, including the hippocampus, cerebellum, and amygdala. Although TRPC5 is activated by receptors coupled to phospholipase C, the precise signaling pathway and modulatory signals remain poorly defined. We find that during continuous agonist activation, heterologously expressed TRPC5 currents are potentiated in a voltage-dependent manner (∼5-fold at positive potentials and ∼25-fold at negative potentials). The reversal potential, doubly rectifying current–voltage relation, and permeability to large cations such as N-methyl-d-glucamine remain unchanged during this potentiation. The TRPC5 current potentiation depends on extracellular Ca2+: replacement by Ba2+ or Mg2+ abolishes it, whereas the addition of 10 mM Ca2+ accelerates it. The site of action for Ca2+ is intracellular, as simultaneous fura-2 imaging and patch clamp recordings indicate that potentiation is triggered at ∼1 µM [Ca2+]. This potentiation is prevented when intracellular Ca2+ is tightly buffered, but it is promoted when recording with internal solutions containing elevated [Ca2+]. In cell-attached and excised inside-out single-channel recordings, increases in internal [Ca2+] led to an ∼10–20-fold increase in channel open probability, whereas single-channel conductance was unchanged. Ca2+-dependent potentiation should result in TRPC5 channel activation preferentially during periods of repetitive firing or coincident neurotransmitter receptor activation.


2015 ◽  
Vol 308 (11) ◽  
pp. F1288-F1296 ◽  
Author(s):  
Chengbiao Zhang ◽  
Lijun Wang ◽  
Xiao-Tong Su ◽  
Dao-Hong Lin ◽  
Wen-Hui Wang

The aim of the present study is to examine the role of Kcnj10 (Kir.4.1) in contributing to the basolateral K conductance in the cortical thick ascending limb (cTAL) using Kcnj10+/+ wild-type (WT) and Kcnj10−/− knockout (KO) mice. The patch-clamp experiments detected a 40- and an 80-pS K channel in the basolateral membrane of the cTAL. Moreover, the probability of finding the 40-pS K was significantly higher in the late part of the cTAL close to the distal convoluted tubule than those in the initial part. Immunostaining showed that Kcnj10 staining was detected in the basolateral membrane of the cTAL but the expression was not uniformly distributed. The disruption of Kcnj10 completely eliminated the 40-pS K channel but not the 80-pS K channel, suggesting the role of Kcnj10 in forming the 40-pS K channel of the cTAL. Also, the disruption of Kcnj10 increased the probability of finding the 80-pS K channel in the cTAL, especially in the late part of the cTAL. Because the channel open probability of the 80-pS K channel in KO was similar to those of WT mice, the increase in the 80-pS K channel may be achieved by increasing K channel number. The whole cell recording further showed that K reversal potential measured with 5 mM K in the bath and 140 mM K in the pipette was the same in the WT and KO mice. Moreover, Western blot and immunostaining showed that the disruption of Kcnj10 did not affect the expression of Na-K-Cl cotransporter 2 (NKCC2). We conclude that Kir.4.1 is expressed in the basolateral membrane of cTAL and that the disruption of Kir.4.1 has no significant effect on the membrane potential of the cTAL and NKCC2 expression.


2018 ◽  
Author(s):  
Pablo Miranda ◽  
Miguel Holmgren ◽  
Teresa Giraldez

ABSTRACTThe open probability of large conductance voltage- and calcium-dependent potassium (BK) channels is regulated allosterically by changes in the transmembrane voltage and intracellular concentration of divalent ions (Ca2+ and Mg2+). The divalent cation sensors reside within the gating ring formed by eight Regulator of Conductance of Potassium (RCK) domains, two from each of the four channel subunits. Overall, the gating ring contains 12 sites that can bind Ca2+ with different affinities. Using patch-clamp fluorometry, we have shown robust changes in FRET signals within the gating ring in response to divalent ions and voltage, which do not directly track open probability. Only the conformational changes triggered through the RCK1 binding site are voltage-dependent in presence of Ca2+. Because the gating ring is outside the electric field, it must gain voltage sensitivity from coupling to the voltage-dependent channel opening, the voltage sensor or both. Here we demonstrate that alterations of voltage sensor dynamics known to shift gating currents produce a cognate shift in the gating ring voltage dependence, whereas changing BK channels’ relative probability of opening had little effect. These results strongly suggest that the conformational changes of the RCK1 domain of the gating ring are tightly coupled to the voltage sensor function, and this interaction is central to the allosteric modulation of BK channels.


1994 ◽  
Vol 103 (1) ◽  
pp. 45-66 ◽  
Author(s):  
L P Wollmuth

IKx is a voltage-dependent K+ current in the inner segment of rod photoreceptors that shows many similarities to M-current. The depression of IKx by external Ba2+ was studied with whole-cell voltage clamp. Ba2+ reduced the conductance and voltage sensitivity of IKx tail currents and shifted the voltage range over which they appeared to more positive potentials. These effects showed different sensitivities to Ba2+: conductance was the least sensitive (K0.5 = 7.6 mM), voltage dependence intermediate (K0.5 = 2.4 mM) and voltage sensitivity the most sensitive (K0.5 = 0.2 mM). Ca2+, Co2+, Mn2+, Sr2+, and Zn2+ did not have actions comparable to Ba2+ on the voltage dependence or the voltage sensitivity of IKx tail currents. In high K+ (100 mM), the voltage range of activation of IKx was shifted 20 mV negative, as was the tau-voltage relation. High K+ did not prevent the effect of Ba2+ on conductance, but abolished its ability to affect voltage dependence and voltage sensitivity. Ba2+ also altered the apparent time-course of activation and deactivation of IKx. Low Ba2+ (0.2 mM) slowed both deactivation and activation, with most effect on deactivation; at higher concentrations (1-25 mM), deactivation and activation time courses were equally affected, and at the highest concentrations, 5 and 25 mM Ba2+, the time course became faster than control. Rapid application of 5 mM Ba2+ suggested that the time dependent currents in Ba2+ reflect in part the slow voltage-dependent block and unblock of IKx channels by Ba2+. This blocking action of Ba2+ was steeply voltage-dependent with an apparent electrical distance of 1.07. Ba2+ appears to interact with IKx channels at multiple sites. A model which assumes that Ba2+ has a voltage-independent and a voltage-dependent blocking action on open or closed IKx channels reproduced many aspects of the data; the voltage-dependent component could account for both the Ba(2+)-induced shift in voltage dependence and reduction in voltage sensitivity of IKx tail currents.


Sign in / Sign up

Export Citation Format

Share Document