cAMP- and swelling-activated chloride conductance in rat hepatocytes

1996 ◽  
Vol 271 (1) ◽  
pp. C112-C120 ◽  
Author(s):  
X. J. Meng ◽  
S. A. Weinman

An outwardly rectifying Cl- conductance was identified in primary isolated rat hepatocytes, and the whole cell patch-clamp technique was used to characterize its properties and mechanisms of activation. With symmetrical Cl(-)-containing solutions on both sides and adenosine 3',5'-cyclic monophosphate (cAMP; 100 microM) in the pipette solution, a large outwardly rectifying conductance (1,014 +/- 153 pS/pF, n = 20) developed in all cells within 3 min. This cAMP-activated conductance was highly anion selective and slowly inactivated at voltages > 80 mV. It was completely inhibited by the anion channel blocker 5-nitro-2-(3-phenylpropylamino) benzoic acid (200 microM, n = 6) and partially inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (150 microM, n = 7). It displayed a halide selectivity of I- > Br- > Cl-. In the absence of cAMP, a functionally similar conductance was activated by cell swelling. Reduction of bath osmolality from 300 to 250 mosmol/kg increased membrane conductance from 64 +/- 16.4 to 487 +/- 23 pS/pF (n = 4). This swelling-activated conductance was also highly anion selective and had identical halide selectivity and blocker sensitivity as the cAMP-activated conductance. Although cell swelling was not necessary for cAMP activation, cell shrinkage with hyperosmotic bath (350 mosmol/kg), either before or after exposure to cAMP, inhibited the cAMP-activated conductance. By the determination of conductance as a function of bath osmolality in the presence and absence of cAMP, it was observed that cAMP shifted the osmotic set point for conductance activation without changing either the maximum or minimum conductance. In conclusion, both cAMP and cell swelling activate a large outwardly rectifying Cl- conductance in rat hepatocytes. Its ionic selectivity and sensitivity to channel blockers are identical to those seen for swelling-activated Cl- conductances in many cell types. The conductive properties are not those of cystic fibrosis transmembrane conductance regulator-mediated Cl- conductance. cAMP appears to activate this conductance by altering the volume set point of a swelling-activated channel.

1995 ◽  
Vol 268 (5) ◽  
pp. H2036-H2047 ◽  
Author(s):  
P. F. Fransen ◽  
M. J. Demolder ◽  
D. L. Brutsaert

The whole cell mode of the patch-clamp technique was applied to cultured endocardial endothelial cells from the porcine right ventricle to study their electrophysiological properties. With isotonic pipette and bathing solutions (300-310 mosmol/kgH2O), single endocardial endothelial cells had resting membrane potentials ranging from -20 to -90 mV (mean = -55 +/- 20 mV, n = 48). In voltage-clamp experiments, the main membrane current was an inwardly rectifying K+ current with all characteristics described for the inwardly rectifying K+ current in vascular endothelium. Outward currents at positive clamp potentials were small, but when cell swelling was induced by means of a hypertonic pipette or hypotonic bathing solution and ATP (5 mM) was present in the pipette solution, a large outwardly rectifying current developed. This volume-activated current was insensitive to extracellular K+ or Na+ concentration variations but sensitive to changes in extracellular Cl- concentrations. It was inhibited in the presence of 4,4'-diisothiocyanostilbene-2,2 disulfonic acid (100-300 microM) and flufenamic acid (50-100 microM). Volume-activated Cl- channels are different from the stretch-activated cationic channels described in vascular endothelium and might be involved in the regulation of cell volume or the response to mechanical stretch.


1997 ◽  
Vol 273 (5) ◽  
pp. F680-F697 ◽  
Author(s):  
I. Rubera ◽  
M. Tauc ◽  
C. Poujeol ◽  
M. T. Bohn ◽  
M. Bidet ◽  
...  

Ionic currents induced by cell swelling were characterized in primary cultures of rabbit distal bright convoluted tubule (DCTb) by the whole cell patch-clamp technique. Cl− currents were produced spontaneously by whole cell recording with an isotonic pipette solution or by exposure to a hypotonic stress. Initial Cl− currents exhibited outwardly rectifying current-voltage relationship, whereas steady-state currents showed strong decay with depolarizing pulses. The ion selectivity sequence was I−= Br− > Cl− ≫ glutamate. Currents were inhibited by 0.1 mM 5-nitro-2-(3-phenylpropylamino)benzoic acid and 1 mM 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid and strongly blocked by 1 mM diphenylamine-2-carboxylate. Currents were insensitive to intracellular Ca2+but required the presence of extracellular Ca2+. They were not activated in cells pretreated with 200 nM staurosporine, 50 μM LaCl3, 10 μM nifedipine, 100 μM verapamil, 5 μM tamoxifen, and 50 μM dideoxyforskolin. Staurosporine, tamoxifen, verapamil, or the absence of external Ca2+ was without effect on the fully developed Cl−currents. Osmotic shock also activated K+ currents in Cl−-free conditions. These currents were time independent, activated at depolarized potentials, and inhibited by 5 mM BaCl2. The activation of Cl− and K+ currents by an osmotic shock may be implicated in regulatory volume decrease in DCTb cells.


1993 ◽  
Vol 265 (1) ◽  
pp. C156-C165 ◽  
Author(s):  
J. S. Stoddard ◽  
J. H. Steinbach ◽  
L. Simchowitz

The properties of the conductive Cl- transport pathway underlying regulatory volume decrease (RVD) in human neutrophils were investigated using the whole cell patch-clamp technique. Cell swelling was induced during whole cell recordings by making the patch pipette solution hyperosmotic (approximately 20%) relative to the bath by addition of sucrose. Immediately after establishment of the whole cell configuration, no measurable Cl- currents were evident. Over a period of several minutes the outwardly rectifying Cl- current that developed displayed no apparent voltage dependence of activation and did not inactivate with time during voltage steps over the range of -80 to +80 mV. Reduction of Cl- currents by application of suction to the interior of the pipette implied that the swelling-induced Cl- channels are activated by membrane stretch. Based on reversal potential measurements, the volume-induced Cl- conductance was found to discriminate poorly among Cl-, Br-, I-, and NO3-, to possess a finite permeability to glucuronate (Pglucuronate/PCl approximately 0.1) and to be impermeable to cations. Single-channel conductance was estimated to be 1.5 pS from analysis of the variance of membrane current fluctuations. The activated Cl- currents were blocked by 100 microM of the compound MK-447 analogue A (inhibitor constant Ki = 37 microM) and by 200 microM 3,5-diiodosalicylate, 500 microM 4-acetamido-4'-iodothiocyanostilbene-2,2'-disulfonic acid, and 200 microM UK-5099. These results suggest that the initial event triggering RVD in neutrophils may be activation of stretch sensitive Cl- channels in the plasma membrane.


1996 ◽  
Vol 271 (2) ◽  
pp. C579-C588 ◽  
Author(s):  
J. A. Hall ◽  
J. Kirk ◽  
J. R. Potts ◽  
C. Rae ◽  
K. Kirk

The effect of osmotic cell swelling on the permeability of HeLa cells to a range of structurally unrelated solutes including taurine, sorbitol, thymidine, choline, and K+ (96Rb+) was investigated. For each solute tested, reduction in the osmolality of the medium from 300 to 200 mosmol/kgH2O caused a significant increase in the unidirectional influx rate. In each case, the osmotically activated transport component was nonsaturable up to external substrate concentrations of 50 mM. Inhibitors of the swelling-activated anion channel of HeLa cells [quinine, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, niflumate, 1,9-dideoxyforskolin, 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), and tamoxifen] blocked the osmotically activated influx of each of the different substrates tested, as well as the osmotically activated efflux of taurine and I-. Tamoxifen and NPPB were similarly effective at blocking the osmotically activated efflux of 96Rb+. The simplest of several hypotheses consistent with the data is that the osmotically activated transport of the different solutes tested here is via a swelling-activated anion-selective channel that has a significant cation permeability and a minimum pore diameter of 8-9 A.


1993 ◽  
Vol 265 (4) ◽  
pp. C997-C1005 ◽  
Author(s):  
H. C. Chan ◽  
W. O. Fu ◽  
Y. W. Chung ◽  
S. J. Huang ◽  
T. S. Zhou ◽  
...  

Swelling-induced Cl- conductance in cultured rat epididymal cells was characterized using whole cell patch-clamp techniques. Activation of whole cell current with an outwardly rectifying current-potential relationship was observed in cells exposed to hyposmotic solutions. This current was determined, from the observed current-reversal potentials at different Cl- concentrations, to be Cl- selective. The anion selectivity sequence of the swelling-induced Cl- conductance was I- approximately NO3- approximately Br- > Cl- > 2-(N-morpholino)ethanesulfonic acid. The swelling-induced Cl- conductance was reversibly inhibited by different Cl- channel blockers. Unlike diphenylamine-2-carboxylate or 5-nitro-2-(3-phenylpropylamino)-benzoate, which showed voltage-independent blockade, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid showed a marked voltage-dependent blockade of the volume-sensitive Cl- current, with a greater effect at depolarizing voltages. The swelling-induced Cl- conductance appeared to be different from the Ca(2+)- or adenosine 3',5'-cyclic monophosphate-activated Cl- conductances on the basis of the following observations: 1) swelling-induced current activation was seen even in the presence of kinase inhibitor (H-8) or absence of external free Ca2+, and 2) further increase in current activation could be produced by swelling after Ca(2+)- or adenosine 3',5'-cyclic monophosphate-induced current activation. The swelling-induced Cl- conductance may be involved in regulating epithelial cell volume as well as serving other important epididymal functions such as facilitating transepithelial secretion of organic compounds.


1994 ◽  
Vol 267 (3) ◽  
pp. C688-C699 ◽  
Author(s):  
J. D. Jirsch ◽  
D. W. Loe ◽  
S. P. Cole ◽  
R. G. Deeley ◽  
D. Fedida

During whole cell recording with 4 mM ATP and 0.1 mM GTP in the pipette, outwardly rectifying Cl- currents (155 +/- 20.5 pA/pF) were repetitively activated on reduction of bath solution osmolarity from 290 mosM (control) to 210 mosM. These currents were sensitive to 0.1-1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid. Omission of ATP from the pipette solution reduced the current magnitude to 42.7 +/- 9.5 pA/pF and prevented repetitive activation. More hyposmotic solutions (160 mosM) usually elicited current repetitively despite an ATP-free pipette solution. In cells depleted of ATP (to < 5% of control) by preincubation with 2-deoxyglucose (10 mM) and rotenone (100 nM), hyposmotic solutions failed to activate significant current. Cell volume increased to 230 +/- 18% of control (19.1 +/- 1.2 microns) in 210 mosM bath (normal cells) but only to 114 +/- 13% of control in ATP-depleted cells exposed to 160 mosM solution. This failure of ATP-depleted cells to swell in hypotonic external solutions was reversed by overnight pretreatment with cytochalasin D (2 micrograms/ml; n = 6) but not by colchicine (250 microM; n = 8). In outside-out patches of membrane dialyzed with zero ATP and excised from swollen cells, we observed sustained activation of a 53-pS outwardly rectifying channel (chord conductance, +100 mV; open probability approximately 1.0). In cell-attached patches from normal and ATP-depleted cells, we activated similar channels by suction. ATP does not appear to be an absolute requirement for the activation of this Cl- channel in H69AR cells but may be essential for the normal volume response and channel activation mediated through cytoskeletal elements within cells.


1990 ◽  
Vol 258 (2) ◽  
pp. G290-G298
Author(s):  
J. G. Corasanti ◽  
D. Gleeson ◽  
J. L. Boyer

Isolated hepatocyte suspensions were exposed to hypotonic and hypertonic stresses and serial cell volume measurements were made with an electronic particle size analyzer. With the exposure to hypotonic (160 mosM) buffer, hepatocytes swelled within 30-60 s as osomometers [relative volume (RV) = 1.44 +/- 0.08] and subsequently underwent regulatory volume decrease (RVD) back toward the resting (isotonic) level (1.16 +/- 0.05). This volume recovery was blocked by 65 mM extracellular K+ concentration and inhibited by barium (1 mM) and quinine (0.5 mM) but not by bumetanide (0.1 mM). Chloride depletion inhibited RVD by approximately 40% while 0.5 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) blocked the recovery by almost 90%. Calcium deprivation had no effect on RVD, nor did ouabain, amiloride, or sodium replacement. When exposed to buffer made hypertonic by addition of 200 mM sucrose, cells shrunk as osmometers (RV = 0.74 +/- 0.02) but did not exhibit regulatory volume increase (RVI). However, when cells that had first undergone RVD were reexposed to isotonic medium (relative hypertonic stress) RVI could be demonstrated from RV 0.77 +/- 0.17 to 0.91 +/- 0.20. This response was dependent on sodium, partially dependent on bicarbonate and chloride, and inhibited by the Na(+)-H+ exchange inhibitor amiloride (1 mM) but not by DIDS. Our findings suggest that RVD in rat hepatocytes is mediated by quinine- and barium-sensitive K+ conductance and DIDS-sensitive anion conductance, which is partly accounted for by Cl-; RVI is mediated by activation of Na(+)-H+ exchange coupled with a bicarbonate- and chloride-dependent but DIDS-insensitive process.


1996 ◽  
Vol 270 (2) ◽  
pp. C500-C507 ◽  
Author(s):  
G. R. Li ◽  
J. Feng ◽  
Z. Wang ◽  
S. Nattel

The present study was designed to evaluate the presence of basal, swelling-induced, and cAMP-dependent Cl- currents in human atrial myocytes studied with the whole cell patch-clamp technique. Under basal conditions, a small outwardly rectifying background conductance was noted that reversed close to 0 mV and was not altered by Cl- replacement. Isoproterenol (1 microM), forskolin (3 microM), and 8-bromoadenosine 3',5'-cyclic monophosphate (50 microM) did not increase membrane conductance, even when responsiveness to isoproterenol was confirmed by an increase in Ca2+ current and when perforated-patch techniques (nystatin) were used. Exposure to hyposmotic solutions increased cell volume and induced a whole cell conductance that showed outward rectification, was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (100 microM), and responded to changes in Cl- gradient in a fashion consistent with a Cl(-)-selective conductance, with estimated relative permeabilities of 1, 0.25, and 0.07 for Cl-, methanesulfonate, and aspartate, respectively. The results suggest that human atrial cells lack basal and adenosine 3',5'-cyclic monophosphate-dependent Cl- current but manifest a substantial Cl- conductance in the presence of cell swelling.


1992 ◽  
Vol 263 (4) ◽  
pp. H1128-H1136 ◽  
Author(s):  
O. Tovar ◽  
L. Tung

Electroporation of the cardiac cell membrane may result from intense electric fields applied to cardiac muscle, associated for example with defibrillation and cardioversion. We analyzed the distribution of voltage levels sufficient to cause electroporation in enzymatically isolated frog cardiac cells, using the cell-attached patch-clamp technique with rectangular pulses similar to those used in experimental studies of cardiac defibrillation. Five-millisecond monophasic or ten-millisecond biphasic symmetric (1/1) and asymmetric (1/0.5) rectangular pulses of either polarity were applied to the cell membrane in 100-mV steps from 0.2 to 0.8 V. The membrane conductance was continuously monitored by a low-voltage pulse train. In a total of 77 cells, we observed a step increase in conductance, occurring in 21% of cells at a transmembrane potential of 0.3 V, 52% at 0.4 V, 14% at 0.5 V, and 13% at 0.6-0.8 V. Electroporation occurred with this voltage distribution regardless of pulse shape, polarity, or the presence of all of the following ionic channel blockers: tetrodotoxin, barium, tetraethylammonium, 4-aminopyridine, cadmium, nickel, and gadolinium. The time course of membrane recovery was highly variable. The maintenance of a high membrane conductance after the shock pulse was associated with irreversible cell contracture provided that Ca2+ was included in the patch-pipette solution. However, with biphasic asymmetric pulses, the conductance recovered very quickly (< or = 37 ms).(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 263 (6) ◽  
pp. H1967-H1971 ◽  
Author(s):  
D. Y. Duan ◽  
B. Fermini ◽  
S. Nattel

In rabbit atrial myocytes, depolarization of the membrane results in a rapidly activating transient outward current (I(to)) that then decays to a sustained level. The sustained current (Isus) remains constant for at least 5 s during continued depolarization. The present study was designed to identify the ionic mechanism underlying Isus with the use of whole cell voltage-clamp techniques. After exposure to 2 mM 4-aminopyridine (4-AP), the 4-AP-sensitive transient outward current (I(to1)) was abolished, but Isus was unaffected. Isus was not blocked by the K+ channel blockers tetraethylammonium chloride and Ba2+, was not changed by increasing superfusate K+ concentration, and was still present when K+ was replaced by Cs+ in both the superfusate and the pipette. Isus was significantly reduced by the Cl- transport blockers 4-acetamido-4'-isothiocyanatostilbene-2.2'-disulfonic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. The current-voltage relations of Isus showed outward rectification, and the reversal potential of Isus shifted with changes in the transmembrane Cl- gradient in the fashion expected for a Cl- current. We conclude that Isus in rabbit atrium is due to a noninactivating Cl- current which, unlike previously described cardiac Cl- currents, is manifest in the absence of exogenous stimulators of adenosine 3',5'-cyclic monophosphate formation, cytosolic Ca2+ transients, or cell swelling.


Sign in / Sign up

Export Citation Format

Share Document