cGMP-mediated Ca2+ release from IP3-insensitive Ca2+ stores in smooth muscle

1998 ◽  
Vol 274 (5) ◽  
pp. C1199-C1205 ◽  
Author(s):  
Karnam S. Murthy ◽  
Gabriel M. Makhlouf

Recent studies on the role of nitric oxide (NO) in gastrointestinal smooth muscle have raised the possibility that NO-stimulated cGMP could, in the absence of cGMP-dependent protein kinase (PKG) activity, act as a Ca2+-mobilizing messenger [K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 ( Gastrointest. Liver Physiol. 28): G660–G671, 1993]. This notion was examined in dispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) and with NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 μM), NO (1 μM), and VIP (1 μM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ release stimulated by 8-BrcGMP was concentration dependent with an EC50 of 0.4 ± 0.1 μM and a threshold of 10 nM. 8-BrcGMP and NO increased cytosolic free Ca2+ concentration ([Ca2+]i) and induced contraction; both responses were abolished after Ca2+ stores were depleted with thapsigargin. With VIP, which normally increases [Ca2+]iby stimulating Ca2+ influx, treatment with PKA and PKG inhibitors caused a further increase in [Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release nor contraction induced by cGMP and NO in permeabilized muscle cells was affected by heparin or ruthenium red. Ca2+ release induced by maximally effective concentrations of cGMP and inositol 1,4,5-trisphosphate (IP3) was additive, independent of which agent was applied first. We conclude that, in the absence of PKA and PKG activity, cGMP stimulates Ca2+ release from an IP3-insensitive store and that its effect is additive to that of IP3.

1997 ◽  
Vol 272 (5) ◽  
pp. L865-L871 ◽  
Author(s):  
B. Tolloczko ◽  
Y. L. Jia ◽  
J. G. Martin

Agents increasing intracellular adenosine 3',5'-cyclic monophosphate (cAMP) cause relaxation of airway smooth muscle. However, the mechanisms of their action are not fully understood. We investigated the role of cAMP in the modulation of intracellular Ca2+ concentration ([Ca2+]i) transients evoked by serotonin (5-HT) in cultured rat tracheal smooth muscle (TSM) cells. Forskolin (10(-7) M) caused a significant elevation of intracellular cAMP and a 60% relaxation of tracheal rings contracted with 5-HT but did not affect [Ca2+]i in TSM cells. Forskolin (10(-5) M) completely relaxed tracheal rings and significantly decreased [Ca2+]i during the sustained phase of the 5-HT response. Forskolin-induced relaxation was attenuated by the cAMP-dependent protein kinase A (PKA) inhibitor Rp diastereomer of cAMP (Rp-cAMPS; 10(-4) M) and by the guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase (PKG) inhibitor [Rp isomer of 8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphorothioate, 10(-4) M]. The effects of forskolin on [Ca2+]i were not altered by the PKA inhibitor but were abolished by the PKG inhibitor and thapsigargin. These results indicate that, in rat TSM, the relaxant effects of high concentrations of cAMP may be mediated, at least in part, by facilitating the sequestration of Ca2+ into intracellular stores by a mechanism involving PKG.


2002 ◽  
Vol 282 (3) ◽  
pp. C508-C517 ◽  
Author(s):  
Karnam S. Murthy ◽  
Huiping Zhou ◽  
Gabriel M. Makhlouf

Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-β-d-ribofuranosyl benzimidazole 3′,5′-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca2+release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.


1995 ◽  
Vol 73 (5) ◽  
pp. 565-573 ◽  
Author(s):  
Michael P. Walsh ◽  
Gary J. Kargacin ◽  
John Kendrick-Jones ◽  
Thomas M. Lincoln

Vascular smooth muscle contraction is thought to occur by a mechanism similar to that described for striated muscles, i.e., via a cross-bridge cycling – sliding filament mechanism. This symposium focused on Ca2+ signalling and the role of intracellular free Ca2+ concentration, [Ca2+]i, in regulating vascular tone: how contractile stimuli leading to an increase in [Ca2+]i trigger vasoconstriction and how relaxant signals reduce [Ca2+]i causing vasodilation. M.P. Walsh opened the symposium with an overview emphasizing the central role of myosin phosphorylation–dephosphorylation in the regulation of vascular tone and identifying recent developments concerning regulation of [Ca2+]i, Ca2+ sensitization and desensitization of the contractile response, Ca2+-independent protein kinase C induced contraction, and direct regulation of cross-bridge cycling by the thin filament associated proteins caldesmon and calponin. The remainder of the symposium focused on three specific areas related to the regulation of vascular tone: Ca2+ signalling in relation to smooth muscle structure, structure–function relations of myosin, and the role of cyclic GMP (cGMP) dependent protein kinase. G.J. Kargacin described how smooth muscle cells are structured and how second messenger signals such as Ca2+ might be modified or influenced by this structure. J. Kendrick-Jones then discussed the results of mutagenesis studies aimed at understanding how the myosin light chains, particularly the phosphorylatable (Ca2+–calmodulin dependent) regulatory light chains, control myosin. The vasorelaxant effects of signalling molecules such as β-adrenergic agents and nitrovasodilators are mediated by cyclic nucleotide dependent protein kinases, leading principally to a reduction in [Ca2+]i. T.M. Lincoln described the roles of cyclic nucleotide dependent protein kinases, in particular cyclic GMP dependent protein kinase, in vasodilation.Key words: vascular smooth muscle, regulation of contraction, smooth muscle structure, calcium, cyclic GMP, myosin.


Sign in / Sign up

Export Citation Format

Share Document