Inhibition of ornithine decarboxylase induces STAT3 tyrosine phosphorylation and DNA binding in IEC-6 cells

2000 ◽  
Vol 278 (2) ◽  
pp. C331-C335 ◽  
Author(s):  
Lawrence M. Pfeffer ◽  
Chuan He Yang ◽  
Susan R. Pfeffer ◽  
Aruna Murti ◽  
Shirley A. McCormack ◽  
...  

Polyamines are required for the proliferation of the rat intestinal mucosal IEC-6 cell line. Ornithine decarboxylase (ODC) is the enzyme that catalyzes the first step in polyamine synthesis. ODC inhibition not only leads to polyamine depletion but also leads to inhibition of cell proliferation and regulates the expression of the immediate-early genes c- fos, c- myc, and c- jun. Members of the signal transducers and activators of transcription (STAT) transcription factor family bind to the sis-inducible element (SIE) present in the promoters to regulate the expression of a variety of important genes. In the present study, we tested the hypothesis that the STAT3 transcription factor, which is responsible for activation of the acute phase response genes, is activated after inhibition of ODC. We found that inhibition of ODC rapidly induces STAT3 activation as determined by STAT3 tyrosine phosphorylation, translocation of STAT3 from the cytoplasm into the nucleus, and the presence of STAT3 in SIE-dependent DNA-protein complexes. STAT3 activation upon inhibition of ODC was accompanied by the activation of a STAT3-dependent reporter construct. Moreover, prolonged polyamine depletion resulted in downregulation of cellular STAT3 levels.

1994 ◽  
Vol 14 (5) ◽  
pp. 3186-3196 ◽  
Author(s):  
U M Wegenka ◽  
C Lütticken ◽  
J Buschmann ◽  
J Yuan ◽  
F Lottspeich ◽  
...  

Interleukin-6 (IL-6), leukemia inhibitory factor, oncostatin M, IL-11, and ciliary neurotropic factor are a family of cytokines and neuronal differentiation factors which bind to composite plasma membrane receptors sharing the signal transducing subunit gp130. We have shown recently that IL-6 and leukemia inhibitory factor rapidly activate a latent cytoplasmic transcription factor, acute-phase response factor (APRF), by tyrosine phosphorylation, which then binds to IL-6 response elements of various IL-6 target genes. Here we demonstrate that APRF is activated by all cytokines acting through gp130 and is detected in a wide variety of cell types, indicating a central role of this transcription factor in gp130-mediated signaling. APRF activation is also observed in vitro upon addition of IL-6 to cell homogenates. Protein tyrosine kinase inhibitors block both the tyrosine phosphorylation and DNA binding of APRF. The factor was purified to homogeneity from rat liver and shown to consist of a single 87-kDa polypeptide, while two forms (89 and 87 kDa) are isolated from human hepatoma cells. As reported earlier, the binding sequence specificity of APRF is shared by gamma interferon (IFN-gamma) activation factor, which is formed by the Stat91 protein. Partial amino acid sequence obtained from purified rat APRF demonstrated that it is likely to be related to Stat91. In fact, an antiserum raised against the amino-terminal portion of Stat91 cross-reacted with APRF, suggesting the relatedness of APRF and Stat91. Altogether, these data indicate that APRF belongs to a growing family of Stat-related proteins and that IFN-gamma and IL-6 use similar signaling pathways to activate IFN-gamma activation factor and APRF, respectively.


1994 ◽  
Vol 14 (5) ◽  
pp. 3186-3196
Author(s):  
U M Wegenka ◽  
C Lütticken ◽  
J Buschmann ◽  
J Yuan ◽  
F Lottspeich ◽  
...  

Interleukin-6 (IL-6), leukemia inhibitory factor, oncostatin M, IL-11, and ciliary neurotropic factor are a family of cytokines and neuronal differentiation factors which bind to composite plasma membrane receptors sharing the signal transducing subunit gp130. We have shown recently that IL-6 and leukemia inhibitory factor rapidly activate a latent cytoplasmic transcription factor, acute-phase response factor (APRF), by tyrosine phosphorylation, which then binds to IL-6 response elements of various IL-6 target genes. Here we demonstrate that APRF is activated by all cytokines acting through gp130 and is detected in a wide variety of cell types, indicating a central role of this transcription factor in gp130-mediated signaling. APRF activation is also observed in vitro upon addition of IL-6 to cell homogenates. Protein tyrosine kinase inhibitors block both the tyrosine phosphorylation and DNA binding of APRF. The factor was purified to homogeneity from rat liver and shown to consist of a single 87-kDa polypeptide, while two forms (89 and 87 kDa) are isolated from human hepatoma cells. As reported earlier, the binding sequence specificity of APRF is shared by gamma interferon (IFN-gamma) activation factor, which is formed by the Stat91 protein. Partial amino acid sequence obtained from purified rat APRF demonstrated that it is likely to be related to Stat91. In fact, an antiserum raised against the amino-terminal portion of Stat91 cross-reacted with APRF, suggesting the relatedness of APRF and Stat91. Altogether, these data indicate that APRF belongs to a growing family of Stat-related proteins and that IFN-gamma and IL-6 use similar signaling pathways to activate IFN-gamma activation factor and APRF, respectively.


2021 ◽  
Vol 62 (2) ◽  
pp. 249-264
Author(s):  
Zai-Bao Zhang ◽  
Yuan-Jin Jin ◽  
Hou-Hong Wan ◽  
Lin Cheng ◽  
Zhi-Guo Feng

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaolong Lv ◽  
Shanrong Lan ◽  
Kateta Malangisha Guy ◽  
Jinghua Yang ◽  
Mingfang Zhang ◽  
...  

2014 ◽  
Vol 206 (4) ◽  
pp. 1364-1377 ◽  
Author(s):  
Marçal Soler ◽  
Eduardo Leal Oliveira Camargo ◽  
Victor Carocha ◽  
Hua Cassan-Wang ◽  
Hélène San Clemente ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document