Activation of the CRF 2 receptor modulates skeletal muscle mass under physiological and pathological conditions

2003 ◽  
Vol 285 (4) ◽  
pp. E889-E898 ◽  
Author(s):  
Richard T. Hinkle ◽  
Elizabeth Donnelly ◽  
David B. Cody ◽  
Steven Samuelsson ◽  
Jana S. Lange ◽  
...  

Two receptors activated by the corticotropin-releasing factor (CRF) family of peptides have been identified, the CRF 1 receptor (CRF1R) and the CRF 2 receptor (CRF2R). Of these, the CRF2R is expressed in skeletal muscle. To understand the role of the CRF2R in skeletal muscle, we utilized CRFR knockout mice and CRF2R-selective agonists to modulate nerve damage and corticosteroid- and disuse-induced skeletal muscle atrophy in mice. These analyses demonstrated that activation of the CRF2R decreased nerve damage and corticosteroid- and disuse-induced skeletal muscle mass and function loss. In addition, selective activation of the CRF2R increased nonatrophy skeletal muscle mass. Thus we describe for the first time a novel activity of the CRF2R, modulation of skeletal muscle mass.

2020 ◽  
Vol 21 (5) ◽  
pp. 1628 ◽  
Author(s):  
Keisuke Hitachi ◽  
Masashi Nakatani ◽  
Shiori Funasaki ◽  
Ikumi Hijikata ◽  
Mizuki Maekawa ◽  
...  

Skeletal muscle is a highly plastic organ that is necessary for homeostasis and health of the human body. The size of skeletal muscle changes in response to intrinsic and extrinsic stimuli. Although protein-coding RNAs including myostatin, NF-κβ, and insulin-like growth factor-1 (IGF-1), have pivotal roles in determining the skeletal muscle mass, the role of long non-coding RNAs (lncRNAs) in the regulation of skeletal muscle mass remains to be elucidated. Here, we performed expression profiling of nine skeletal muscle differentiation-related lncRNAs (DRR, DUM1, linc-MD1, linc-YY1, LncMyod, Neat1, Myoparr, Malat1, and SRA) and three genomic imprinting-related lncRNAs (Gtl2, H19, and IG-DMR) in mouse skeletal muscle. The expression levels of these lncRNAs were examined by quantitative RT-PCR in six skeletal muscle atrophy models (denervation, casting, tail suspension, dexamethasone-administration, cancer cachexia, and fasting) and two skeletal muscle hypertrophy models (mechanical overload and deficiency of the myostatin gene). Cluster analyses of these lncRNA expression levels were successfully used to categorize the muscle atrophy models into two sub-groups. In addition, the expression of Gtl2, IG-DMR, and DUM1 was altered along with changes in the skeletal muscle size. The overview of the expression levels of lncRNAs in multiple muscle atrophy and hypertrophy models provides a novel insight into the role of lncRNAs in determining the skeletal muscle mass.


2019 ◽  
Vol 127 (4) ◽  
pp. 1075-1084 ◽  
Author(s):  
Scott M. Ebert ◽  
Jason M. Dierdorff ◽  
David K. Meyerholz ◽  
Steven A. Bullard ◽  
Asma Al-Zougbi ◽  
...  

Age-related skeletal muscle atrophy is a very common and serious condition that remains poorly understood at the molecular level. Several lines of evidence have suggested that the tumor suppressor p53 may play a central, causative role in skeletal muscle aging, whereas other, apparently contradictory lines of evidence have suggested that p53 may be critical for normal skeletal muscle function. To help address these issues, we performed an aging study in male muscle-specific p53-knockout mice (p53 mKO mice), which have a lifelong absence of p53 expression in skeletal muscle fibers. We found that the absence of p53 expression in skeletal muscle fibers had no apparent deleterious or beneficial effects on skeletal muscle mass or function under basal conditions up to 6 mo of age, when mice are fully grown and exhibit peak muscle mass and function. Furthermore, at 22 and 25 mo of age, when age-related muscle weakness and atrophy are clearly evident in mice, p53 mKO mice demonstrated no improvement or worsening of skeletal muscle mass or function relative to littermate control mice. At advanced ages, p53 mKO mice began to die prematurely and had an increased incidence of osteosarcoma, precluding analyses of muscle mass and function in very old p53 mKO mice. In light of these results, we conclude that p53 expression in skeletal muscle fibers has minimal if any direct, cell autonomous effect on basal or age-related changes in skeletal muscle mass and function up to at least 22 mo of age. NEW & NOTEWORTHY Previous studies implicated the transcriptional regulator p53 as a potential mediator of age-related skeletal muscle weakness and atrophy. We tested this hypothesis by investigating the effect of aging in muscle-specific p53-knockout mice. Our results strongly suggest that p53 activity within skeletal muscle fibers is not required for age-related skeletal muscle atrophy or weakness.


Endocrinology ◽  
2003 ◽  
Vol 144 (11) ◽  
pp. 4939-4946 ◽  
Author(s):  
Richard T. Hinkle ◽  
Elizabeth Donnelly ◽  
David B. Cody ◽  
Mary Beth Bauer ◽  
Robert J. Isfort

GeroScience ◽  
2021 ◽  
Author(s):  
Andrew Wilhelmsen ◽  
Kostas Tsintzas ◽  
Simon W. Jones

AbstractSarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.


2020 ◽  
Vol 7 ◽  
Author(s):  
Paul T. Morgan ◽  
Benoit Smeuninx ◽  
Leigh Breen

Sarcopenia is of important clinical relevance for loss of independence in older adults. The prevalence of obesity in combination with sarcopenia (“sarcopenic-obesity”) is increasing at a rapid rate. However, whilst the development of sarcopenia is understood to be multi-factorial and harmful to health, the role of obesity from a protective and damaging perspective on skeletal muscle in aging, is poorly understood. Specifically, the presence of obesity in older age may be accompanied by a greater volume of skeletal muscle mass in weight-bearing muscles compared with lean older individuals, despite impaired physical function and resistance to anabolic stimuli. Collectively, these findings support a potential paradox in which obesity may protect skeletal muscle mass in older age. One explanation for these paradoxical findings may be that the anabolic response to weight-bearing activity could be greater in obese vs. lean older individuals due to a larger mechanical stimulus, compensating for the heightened muscle anabolic resistance. However, it is likely that there is a complex interplay between muscle, adipose, and external influences in the aging process that are ultimately harmful to health in the long-term. This narrative briefly explores some of the potential mechanisms regulating changes in skeletal muscle mass and function in aging combined with obesity and the interplay with sarcopenia, with a particular focus on muscle morphology and the regulation of muscle proteostasis. In addition, whilst highly complex, we attempt to provide an updated summary for the role of obesity from a protective and damaging perspective on muscle mass and function in older age. We conclude with a brief discussion on treatment of sarcopenia and obesity and a summary of future directions for this research field.


Sign in / Sign up

Export Citation Format

Share Document