scholarly journals Nucleus accumbens GLP-1 receptors influence meal size and palatability

2013 ◽  
Vol 304 (12) ◽  
pp. E1314-E1320 ◽  
Author(s):  
Amanda M. Dossat ◽  
Ryan Diaz ◽  
Lindsay Gallo ◽  
Alyssa Panagos ◽  
Kristen Kay ◽  
...  

Recent evidence suggests that the glucagon-like peptide-1 (GLP-1) neuronal projection to the nucleus accumbens core (NAcC) contributes to food intake control. To investigate the role of endogenous stimulation of GLP-1 receptors (GLP-1R) in NAcC, we examined the effects of the GLP-1R antagonist exendin-(9–39) (Ex9) on meal pattern and microstructure of ingestive behavior in rats. Intra-NAcC Ex9 treatment selectively increased meal size relative to vehicle in rats consuming 0.25 M sucrose solution or sweetened condensed milk. Microstructural analysis revealed effects of NAcC Ex9 on initial lick rate and the size and duration of licking bursts in rats consuming 0.1 or 0.25 M sucrose, suggesting that blockade of NAcC GLP-1R increases palatability. Because NAcC Ex9 did not affect licking for nonnutritive saccharin (0.1%), we suggest that the presence of nutrients in the gut may be required for endogenous stimulation of NAcC GLP-1R. Consistent with this, we also found that the meal size-suppressive effects of intragastric nutrient infusion were attenuated by NAcC delivery of Ex9 at a dose that had no effect when delivered alone. Analysis of licking patterns revealed that NAcC Ex9 did not reverse intragastric nutrient-induced suppression of burst number but rather blunted the effect of nutrient infusion on meal size primarily by increasing the size and duration of licking bursts. Together, our results suggest that NAcC Ex9 influences taste evaluation. We conclude that GLP-1 released in NAcC in response to gastrointestinal nutrients reduces the hedonic value of food.

2021 ◽  
Author(s):  
Laura L Grima ◽  
Marios C Panayi ◽  
Oliver Harmson ◽  
Emilie Syed ◽  
Sanjay G Manohar ◽  
...  

While it is well established that dopamine transmission is integral in mediating the influence of reward expectations on reward-seeking actions, the precise causal role of dopamine transmission in moment-to-moment cue-driven behavioural control remains contentious. This is a particular issue in situations where it is necessary to refrain from responding to achieve a beneficial outcome. To examine this, we manipulated dopamine transmission pharmacologically as rats performed a Go/No-Go task that required them to either make or withhold action to gain either a small or large reward. Stimulation of D1Rs, both globally and locally in the nucleus accumbens core (NAcC) region consistently disrupted No-Go performance, potentiating inappropriate responses that clustered strongly just after cue presentation. D1R blockade did not, however, improve rats' ability to withhold responses, but instead primarily disrupted performance on Go trials. While global D1R blockade caused a general reduction of invigoration of reward seeking actions, intra-NAcC administration of the D1R antagonist by contrast increased the likelihood that Go trial performance was in an "unfocused" state. Such a state was characterised, both on and off drug, by a reduction in the precision and speed of responding even though the appropriate action sequence was often executed. These findings suggests that the balance of activity at NAcC D1Rs plays a key role in enabling the rapid activation of a focused, reward-seeking state to enable animals to efficiently and accurately achieve their goal.


2014 ◽  
Vol 34 (20) ◽  
pp. 6985-6992 ◽  
Author(s):  
E. G. Mietlicki-Baase ◽  
P. I. Ortinski ◽  
D. J. Reiner ◽  
C. G. Sinon ◽  
J. E. McCutcheon ◽  
...  

Endocrinology ◽  
2005 ◽  
Vol 146 (9) ◽  
pp. 3739-3747 ◽  
Author(s):  
Gregory M. Sutton ◽  
Bronwyn Duos ◽  
Laurel M. Patterson ◽  
Hans-Rudolf Berthoud

Abstract Signals from the gut and hypothalamus converge in the caudal brainstem to control ingestive behavior. We have previously shown that phosphorylation of ERK1/2 in the solitary nucleus (NTS) is necessary for food intake suppression by exogenous cholecystokinin (CCK). Here we test whether this intracellular signaling cascade is also involved in the integration of melanocortin-receptor (MCR) mediated inputs to the caudal brainstem. Using fourth ventricular-cannulated rats and Western blotting of NTS tissue, we show that the MC4R agonist melanotan II (MTII) rapidly and dose-dependently increases phosphorylation of both ERK1/2 and cAMP response element-binding protein (CREB). Sequential administration of fourth ventricular MTII and peripheral CCK at doses that alone produced submaximal stimulation of pERK1/2 produced an additive increase. Prior fourth ventricular administration of the MC4R antagonist SHU9119 completely abolished the CCK-induced increases in pERK and pCREB and, in freely feeding rats, SHU9119 significantly increased meal size and satiety ratio. Prior administration of the MAPK kinase inhibitor U0126 abolished the capacity of MTII to suppress 2-h food intake and significantly decreased MTII-induced ERK phosphorylation in the NTS. Furthermore, pretreatment with the cAMP inhibitor, cAMP receptor protein-Rp isomer, significantly attenuated stimulation of pERK induced by either CCK or MTII. The results demonstrate that activation of the ERK pathway is necessary for peripheral CCK and central MTII to suppress food intake. The cAMP→ERK→CREB cascade may thus constitute a molecular integrator for converging satiety signals from the gut and adiposity signals from the hypothalamus in the control of meal size and food intake.


2013 ◽  
Vol 23 ◽  
pp. S569-S570
Author(s):  
M.C. Schippers ◽  
M. Gaastra ◽  
T. Mesman ◽  
Y. Van Mourik ◽  
D. Schetters ◽  
...  

2021 ◽  
Author(s):  
Alice Servonnet ◽  
Pierre-Paul Rompré ◽  
Anne-Noël Samaha

Reward-associated conditioned stimuli (CS) can acquire predictive value, evoking conditioned approach behaviors that prepare animals to engage with forthcoming rewards. Such CS can also acquire conditioned reinforcing value, becoming attractive and pursued. Through their predictive and conditioned reinforcing properties, CS can promote adaptive (e.g., locating food) but also maladaptive responses (e.g., drug use). Basolateral amygdala neurons projecting to the nucleus accumbens core (BLA→NAc core neurons) mediate the response to appetitive CS, but the extent to which this involves effects on the predictive and/or conditioned reinforcing properties of CS is unclear. Thus, we examined the effects of optogenetic stimulation of BLA→NAc core neurons on conditioned approach behavior and on the instrumental pursuit of a CS, the latter a measure of conditioned reinforcement. Water-restricted, adult male rats learned that a light-tone compound cue (CS) predicts water delivery. Pairing optogenetic stimulation of BLA→NAc core neurons with CS presentation potentiated conditioned approach behavior, and did so even under extinction conditions, when water was omitted. This suggests that BLA→NAc core neurons promote cue-induced expectation of rewards. Rats also received instrumental conditioning sessions during which they could lever press for CS presentations, without water delivery. Optogenetic stimulation of BLA→NAc core neurons either during these instrumental test sessions or during prior CS-water conditioning did not influence lever responding for the CS. This suggests that BLA→NAc core neurons do not influence the conditioned reinforcing effects of CS. We conclude that BLA→NAc core neurons promote cue-induced control over behavior by increasing cue-triggered anticipation of rewards, without influencing cue 'wanting'.


2008 ◽  
Vol 214 (1) ◽  
pp. 135-139 ◽  
Author(s):  
Thibaut Sesia ◽  
Yasin Temel ◽  
Lee Wei Lim ◽  
Arjan Blokland ◽  
Harry W.M. Steinbusch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document