Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification

2007 ◽  
Vol 292 (4) ◽  
pp. E1231-E1237 ◽  
Author(s):  
Clinton R. Bruce ◽  
Camilla Brolin ◽  
Nigel Turner ◽  
Mark E. Cleasby ◽  
Feike R. van der Leij ◽  
...  

A key regulatory point in the control of fatty acid (FA) oxidation is thought to be transport of FAs across the mitochondrial membrane by carnitine palmitoyltransferase I (CPT I). To investigate the role of CPT I in FA metabolism, we used in vivo electrotransfer (IVE) to locally overexpress CPT I in muscle of rodents. A vector expressing the human muscle isoform of CPT I was electrotransferred into the right lateral muscles of the distal hindlimb [tibialis cranialis (TC) and extensor digitorum longus (EDL)] of rats, and a control vector expressing GFP was electrotransferred into the left muscles. Initial studies showed that CPT I protein expression peaked 7 days after IVE (+104%, P < 0.01). This was associated with an increase in maximal CPT I activity (+30%, P < 0.001) and a similar increase in palmitoyl-CoA oxidation (+24%; P < 0.001) in isolated mitochondria from the TC. Importantly, oxidation of the medium-chain FA octanoyl-CoA and CPT I sensitivity to inhibition by malonyl-CoA were not altered by CPT I overexpression. FA oxidation in isolated EDL muscle strips was increased with CPT I overexpression (+28%, P < 0.01), whereas FA incorporation into the muscle triacylglycerol (TAG) pool was reduced (−17%, P < 0.01). As a result, intramyocellular TAG content was decreased with CPT I overexpression in both the TC (−25%, P < 0.05) and the EDL (−45%, P < 0.05). These studies demonstrate that acute overexpression of CPT I in muscle leads to a repartitioning of FAs away from esterification and toward oxidation and highlight the importance of CPT I in regulating muscle FA metabolism.

2010 ◽  
Vol 298 (5) ◽  
pp. R1435-R1443 ◽  
Author(s):  
Xi Lin ◽  
Kwanseob Shim ◽  
Jack Odle

To examine the regulation of hepatic acetogenesis in neonatal swine, carnitine palmitoyltransferase I (CPT I) activity was measured in the presence of varying palmitoyl-CoA (substrate) and malonyl-CoA (inhibitor) concentrations, and [1-14C]-palmitate oxidation was simultaneously measured. Accumulation rates of 14C-labeled acetate, ketone bodies, and citric acid cycle intermediates within the acid-soluble products were determined using radio-HPLC. Measurements were conducted in mitochondria isolated from newborn, 24-h (fed or fasted), and 5-mo-old pigs. Acetate rather than ketone bodies was the predominant radiolabeled product, and its production increased twofold with increasing fatty acid oxidation during the first 24-h suckling period. The rate of acetogenesis was directly proportional to CPT I activity. The high activity of CPT I in 24-h-suckling piglets was not attributable to an increase in CPT I gene expression, but rather to a large decrease in the sensitivity of CPT I to malonyl-CoA inhibition, which offset a developmental decrease in affinity of CPT I for palmitoyl-CoA. Specifically, the IC50 for malonyl-CoA inhibition and Km value for palmitoyl-CoA measured in 24-h-suckling pigs were 1.8- and 2.7-fold higher than measured in newborn pigs. The addition of anaplerotic carbon from malate (10 mM) significantly reduced 14C accumulation in acetate ( P < 0.003); moreover, the reduction was much greater in newborn (80%) than in 24-h-fed (72%) and 5-mo-old pigs (55%). The results demonstrate that acetate is the primary product of hepatic mitochondrial β-oxidation in Sus scrofa and that regulation during early development is mediated primarily via kinetic modulation of CPT I.


1990 ◽  
Vol 269 (2) ◽  
pp. 409-415 ◽  
Author(s):  
C Prip-Buus ◽  
J P Pegorier ◽  
P H Duee ◽  
C Kohl ◽  
J Girard

The temporal changes in oleate oxidation, lipogenesis, malonyl-CoA concentration and sensitivity of carnitine palmitoyltransferase I (CPT 1) to malonyl-CoA inhibition were studied in isolated rabbit hepatocytes and mitochondria as a function of time after birth of the animal or time in culture after exposure to glucagon, cyclic AMP or insulin. (1) Oleate oxidation was very low during the first 6 h after birth, whereas lipogenesis rate and malonyl-CoA concentration decreased rapidly during this period to reach levels as low as those found in 24-h-old newborns that show active oleate oxidation. (2) The changes in the activity of CPT I and the IC50 (concn. causing 50% inhibition) for malonyl-CoA paralleled those of oleate oxidation. (3) In cultured fetal hepatocytes, the addition of glucagon or cyclic AMP reproduced the changes that occur spontaneously after birth. A 12 h exposure to glucagon or cyclic AMP was sufficient to inhibit lipogenesis totally and to cause a decrease in malonyl-CoA concentration, but a 24 h exposure was required to induce oleate oxidation. (4) The induction of oleate oxidation by glucagon or cyclic AMP is triggered by the fall in the malonyl-CoA sensitivity of CPT I. (5) In cultured hepatocytes from 24 h-old newborns, the addition of insulin inhibits no more than 30% of the high oleate oxidation, whereas it stimulates lipogenesis and increases malonyl-CoA concentration by 4-fold more than in fetal cells (no oleate oxidation). This poor effect of insulin on oleate oxidation seems to be due to the inability of the hormone to increase the sensitivity of CPT I sufficiently. Altogether, these results suggest that the malonyl-CoA sensitivity of CPT I is the major site of regulation during the induction of fatty acid oxidation in the fetal rabbit liver.


2002 ◽  
Vol 282 (5) ◽  
pp. E1014-E1022 ◽  
Author(s):  
Jong-Yeon Kim ◽  
Timothy R. Koves ◽  
Geng-Sheng Yu ◽  
Tod Gulick ◽  
Ronald N. Cortright ◽  
...  

Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (α) and muscle (β), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle β-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC50 for CPT Iβ. We evaluated malonyl-CoA-suppressible [14C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 μM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Iβ splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.


1988 ◽  
Vol 252 (2) ◽  
pp. 409-414 ◽  
Author(s):  
P S Foxworthy ◽  
P I Eacho

Recent studies suggest that the induction of peroxisomal beta-oxidation in rodents may represent an adaptive response to disturbances in hepatic lipid metabolism. The following studies were done to determine the effects of 2-hydroxy-3-propyl-4-[6-(tetrazol-5-yl)hexyloxy]acetophenone (4-THA), a tetrazole-substituted acetophenone which induces peroxisomal beta-oxidation in rodent liver, on fatty acid oxidation in vitro. In isolated hepatocytes, 4-THA inhibited the oxidation of oleate (C18:1) and decreased the mitochondrial redox state. The inhibition was more pronounced in the presence of 0.2 mM-oleate than with 0.5 mM, indicating the inhibition may be competitive. 4-THA had no effect on the oxidation of octanoate (C8:0), suggesting that the site of inhibition of oleate oxidation was the carnitine-dependent transport across the mitochondrial inner membrane. In rat liver mitochondria, 4-THA inhibited carnitine palmitoyltransferase I (CPT-I) competitively with respect to the substrate palmitoyl-CoA, increasing the apparent Km from 19 microM to 86 microM. The inhibition of CPT-I by 4-THA was independent of the concentration of the co-substrate carnitine. Whereas fasting attenuated the inhibition of CPT-I by malonyl-CoA, it did not diminish the inhibition by 4-THA. Inhibition of transferase activity by 4-THA and malonyl-CoA was attenuated in mitochondria which had been solubilized with octyl glucoside to expose the latent form of carnitine palmitoyltransferase (CPT-II), suggesting that the inhibition was specific for CPT-I. The specificity was further demonstrated in studies of mitochondrial beta-oxidation in which 4-THA inhibited the oxidation of palmitoyl-CoA but not palmitoylcarnitine. The results demonstrate that 4-THA inhibits fatty acid oxidation in rat liver in vitro at the site of transport across the mitochondrial inner membrane, CPT-I. Whether this disruption in mitochondrial oxidation is causally related to the induction of peroxisomal beta-oxidation is yet to be determined.


1983 ◽  
Vol 212 (2) ◽  
pp. 521-524 ◽  
Author(s):  
T W Stephens ◽  
G A Cook ◽  
R A Harris

Malonyl-CoA inhibition of carnitine palmitoyltransferase I was found to be very pH-dependent. Malonyl-CoA concentrations causing 50% inhibition (I50) at pH 6.0, 6.5, 7.0, 7.5 and 8.0 were 0.04, 1, 9, 40 and 200 microM respectively. It is suggested that a lowering of intracellular pH, such as might occur in ketoacidosis, may attenuate hepatic fatty acid oxidation by increasing malonyl-CoA sensitivity of carnitine palmitoyltransferase I.


1985 ◽  
Vol 227 (2) ◽  
pp. 651-660 ◽  
Author(s):  
T W Stephens ◽  
A J Higgins ◽  
G A Cook ◽  
R A Harris

Oxfenicine [S-2-(4-hydroxyphenyl)glycine] is transaminated in heart and liver to 4-hydroxyphenylglyoxylate, an inhibitor of fatty acid oxidation shown in this study to act at the level of carnitine palmitoyltransferase I (EC 2.3.1.21). Oxfenicine was an effective inhibitor of fatty acid oxidation in heart, but not in liver. Tissue specificity of oxfenicine inhibition of fatty acid oxidation was due to greater oxfenicine transaminase activity in heart and to greater sensitivity of heart carnitine palmitoyltransferase I to inhibition by 4-hydroxyphenylglyoxylate [I50 (concentration giving 50% inhibition) of 11 and 510 microM for the enzymes of heart and liver mitochondria, respectively]. Branched-chain-amino-acid aminotransferase (isoenzyme I, EC 2.6.1.42) was responsible for the transamination of oxfenicine in heart. A positive correlation was found between the capacity of various tissues to transaminate oxfenicine and the known content of branched-chain-amino-acid aminotransferase in these tissues. Out of three observed liver oxfenicine aminotransferase activities, one may correspond to asparagine aminotransferase, but the major activity could not be identified by partial purification and characterization. As reported previously for malonyl-CoA inhibition of carnitine palmitoyltransferase I, 4-hydroxyphenylglyoxylate inhibition of this enzyme was found to be very pH-dependent. In striking contrast with the kinetics of malonyl-CoA inhibition, 4-hydroxyphenylglyoxylate inhibition was not affected by oleoyl-CoA concentration, but was partially reversed by increasing carnitine concentrations.


1996 ◽  
Vol 318 (3) ◽  
pp. 767-770 ◽  
Author(s):  
Lesley DRYNAN ◽  
Patti A. QUANT ◽  
Victor A. ZAMMIT

The relationships between the increase in blood ketone-body concentrations and several parameters that can potentially influence the rate of hepatic fatty acid oxidation were studied during progressive starvation (up to 24 h) in the rat in order to discover whether the sensitivity of mitochondrial overt carnitine palmitoyltransferase (CPT I) to malonyl-CoA plays an important part in determining the intrahepatic potential for fatty acid oxidation during the onset of ketogenic conditions. A rapid increase in blood ketone-body concentration occurred between 12 and 16 h of starvation, several hours after the marked fall in hepatic malonyl-CoA and in serum insulin concentrations and doubling of plasma non-esterfied fatty acid (NEFA) concentration. Consequently, both the changes in hepatic malonyl-CoA and serum NEFA preceded the increase in blood ketone-body concentration by several hours. The maximal activity of CPT I increased gradually throughout the 24 h period of starvation, but the increases did not become significant before 18 h of starvation. By contrast, the sensitivity of CPT I to malonyl-CoA and the increase in blood ketone-body concentration followed an identical time course, demonstrating the central importance of this parameter in determining the ketogenic response of the liver to the onset of the starved state.


2004 ◽  
Vol 286 (6) ◽  
pp. H2243-H2248 ◽  
Author(s):  
Beatrijs Bartelds ◽  
Janny Takens ◽  
Gioia B. Smid ◽  
Victor A. Zammit ◽  
Carina Prip-Buus ◽  
...  

Carnitine palmitoyltransferase I (CPT I) catalyzes the conversion of acyl-CoA to acylcarnitine at the outer mitochondrial membrane and is a key enzyme in the control of long-chain fatty acid (LC-FA) oxidation. Because myocardial LC-FA oxidation increases dramatically after birth, we determined the extent to which CPT I expression contributes to these changes in the perinatal lamb. We measured the steady-state level of transcripts of the CPT1A and CPT1B genes, which encode the liver (L-CPT I) and muscle CPT I (M-CPT I) isoforms, respectively, as well as the amount of these proteins, their total activity, and the amount of carnitine in left ventricular tissue from fetal and newborn lambs. We compared these data with previously obtained myocardial FA oxidation rates in vivo in the same model. The results showed that CPT1B was already expressed before birth and that total CPT I expression transiently increased after birth. The protein level of M-CPT I was high throughout development, whereas that of L-CPT I was only transiently upregulated in the first week after birth. The total CPT I activity in vitro also increased after birth. However, the increase in myocardial FA oxidation measured in vivo (112-fold) by far exceeded the increase in gene expression (2.2-fold), protein amount (1.1-fold), and enzyme activity (1.2-fold) in vitro. In conclusion, these results stress the importance of substrate supply per se in the postnatal increase in myocardial FA oxidation. M-CPT I is expressed throughout perinatal development, making it a primary target for metabolic modulation of myocardial FA oxidation.


1995 ◽  
Vol 311 (3) ◽  
pp. 853-860 ◽  
Author(s):  
M Guzmán ◽  
C Bijleveld ◽  
M J H Geelen

Periportal and perivenous hepatocytes were isolated from rats subjected to different treatments that induce (starvation, cold exposure) or depress (refeeding after starvation) hepatic fatty acid oxidation. These experiments were designed to determine factors that may be involved in creating and maintaining the asymmetrical distribution of this metabolic pathway in the acinus of the liver. The uneven distribution of mitochondrial [14C]-palmitate oxidation within the acinus (i) was very flexible and changed markedly with the physiological status of the animal (periportal/perivenous ratio: 1.5, 2.0, 1.0 and 0.4 for fed, starved, refed and cold-exposed animals respectively), (ii) coincided with a similar zonation of carnitine palmitoyltransferase I activity in fed as well as in cold-exposed animals, (iii) was paralleled by a comparable zonation of mitochondrial 3-hydroxy-3-methyl-glutaryl-CoA synthase activity in starved animals, and (iv) was not determined by zonal differences in any of the following parameters: sensitivity of carnitine palmitoyltransferase I to malonyl-CoA, intracellular concentration of malonyl-CoA, fatty acid synthesizing capacity, acetyl-CoA carboxylase activity, fatty acid synthase activity or relative content of the two hepatic acetyl-CoA carboxylase isoforms. Unlike mitochondrial oxidation, peroxisomal [14C]palmitate oxidation was always zonated towards the perivenous zone of the liver irrespective of the physiological status of the animal. The data presented show that changes in the acinar distribution of mitochondrial long-chain fatty acid oxidation involve specific long-term mechanisms under different physiological conditions.


Sign in / Sign up

Export Citation Format

Share Document